• Title/Summary/Keyword: pressed powder

Search Result 218, Processing Time 0.05 seconds

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

Effects of Freezing Pretreatment on Juice Expression and Drying Characteristics of Prunus mume Fruit (동결 전처리가 매실의 착즙과 건조 특성에 미치는 영향)

  • Chung, Hun-Sik;Kim, Han-Soo;Lee, Young-Guen;Seong, Jong-Hwan
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.507-512
    • /
    • 2010
  • The effects of pretreatment by freezing on juice expression and drying characteristics of Prunus mume fruit were investigated. Fresh fruit slices were frozen at $-20^{\circ}C$, thawed, and then either pressed (to yield juice) or dried. Fresh fruit slices were used as controls. Both juice yield and drying rate were higher when pre-frozen fruit was tested, compared to fresh fruit. The L and b color values were lower in the juice and dried powder of pre-frozen compared to fresh fruit. The a color value was higher in juice and powder prepared from pre-frozen fruit compared to fresh fruit. There was no significant difference in free sugar or organic acid content between juices and powders from pre-frozen and fresh fruit. None of soluble solid content, titratable acidity, or juice pH was affected by freezing pretreatment. The results suggest that such pretreatment may be useful to increase juice yield and drying rate. However, browning of juice and powder may be elevated.

Characterization of Hot Isostatically Pressed Ni-Based Superalloy IN 713C (열간 등압 성형된 니켈기 초내열 합금 IN 713C 분말 소결체의 특성 평가)

  • Kim, Youngmoo;Kim, Eun-Pyo;Chunga, Seong-Taek;Lee, Seong;Noh, Joon-Woong;Lee, Sung Ho;Kwon, Young-Sam
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.264-268
    • /
    • 2013
  • Nickel-based superalloy IN 713C powders have been consolidated by hot isostatic pressing (HIPing). The microstructure and mechanical properties of the superalloys were investigated at the HIPing temperature ranging from $1030^{\circ}C$ to $1230^{\circ}C$. When the IN 713C powder was heated above ${\gamma}^{\prime}$ solvus temperature (about $1180^{\circ}C$), the microstructure was composed of the austenitic FCC matrix phase ${\gamma}$ plus a variety of secondary phases, such as ${\gamma}^{\prime}$ precipitates in ${\gamma}$ matrix and MC carbides at grain boundaries. The yield and tensile strengths of HIPed specimens at room temperature were decreased while the elongation and reduction of area were increased as the processing temperature increased. At $700^{\circ}C$, the strength was similar regardless of HIPing temperature; however, the ductility was drastically increased with increasing the temperature. It is considered that these properties compared to those of cast products are originated from the homogeneity of microstructure obtained from a PM process.

The synthesis of $NH_3$ powder using gaseous $NH_3$ as precipitator (기상의 $NH_3$를 침전체로 사용하는 $BaTiO_{3}$ 분말의 합성)

  • 현성호;김정환;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.25-37
    • /
    • 1997
  • The synthesis of high purity and ultra-fine $BaTiO_{3}$ by precipitation with gaseous $NH_{3}$ as precipitator was investigated to find an alternative process to solve various problems of present wet methods. This study consisted of two parts ; synthesis of $BaTiO_{3}$ precipitation with gaseous $NH_{3}$ and test of electrical property for the $La_{2}O_{3}$ doped $BaTiO_{3}$. The proper condition for the synthesis of $BaTiO_{3}$ by precipitation with gaseous $NH_{3}$ is as follows. The pH was 9.0. $H_{2}O_{2}$ mole ratio to $TiCl_{4}$ was 10. $NH_{3}$ gas follow rate did not influence the synthesis of $BaTiO_{3}$. The calcination temperature of $BaTiO_{3}$ was $300^{\circ}C$. Also, the synthesis of $La_{2}O_{3}$-doped $BaTiO_{3}$ was tested through the wet process. Under these condition, the shape of prepared $BaTiO_{3}$ powder was spherical type and the size of that was about $0.2{\mu}m$. After the powder was pressed, this green body was sintered at the $1300^{\circ}C$. Under these conditions, the water absorptance and the density of the obtained sintered body were below 0.04 %, 5.2 g/$cm^{3}$, respectively. Also the grain size of that was about $10{\mu}m$ and it was similar to commercial product.

  • PDF

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

The fabrication and characterization of hard rock cutting diamond saw (석재가공용 다이아몬드 톱의 제조 및 특성)

  • Lee Hyun-Woo;Jeon Woo-yong;Lee Oh-yeon;Seol Kyeong-won
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.412-420
    • /
    • 2004
  • The purpose of the present study is to determine an optimum composition using cheaper powders keeping with high performance of hard rock cutting diamond saw blade. With 50Fe-20(Cu . Sn)-30Co specimen, a part of Co was replaced by Ni(5%, 10%, and 15%, respectively). These specimens were hot pressed and sintered for predetermined time at various temperature. Sintering is performed by two different methods of temperature controlled method and specimen dimension controlled method. In order to determine the property of the sintered diamond saw blade, 3 point bending tester, X-ray diffractometer, and SEM were used. As the Co in the bond alloy was replaced by Ni, the hardness of the specimen increased. Thus the 50Fe-20(CuㆍSn)-15Co-15Ni specimen showed the maximum hardness of 104(HRB). The results of 3 point bending test showed that flexure strength decreased along with increase in Ni content. This is attributed to the formation of intermetallic compound(Ni$_{x}$Sn) determined by X-ray diffraction. The fracture surface after 3 point bending test showed that diamond was fractured in the specimen containing 0%, 5%, and 10%Ni, and the fracture occurred at the interface between diamond and matrix in the specimen containing 15%Ni. The cutting ability test showed that the abrasive property was not changed in the specimen containing 0%, 5%, and 10%Ni. The optimum composition determined in this study is 50Fe-20(CuㆍSn)-20Co-10Ni.

Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy (분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

Thermoelectric Properties of the Hot-Pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ Alloys with the $Bi_{2}Se_{3}$ Content ($Bi_{2}Se_{3}$ 함량에 따른 Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$)

  • Kim, Hee-Jeong;Oh, Tae-Sung;Hyun, Do-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.408-412
    • /
    • 1998
  • Thermoelectric properties of Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25) prepared by mechanical alloying and hot pressing, were investigated. Contrary to the p-type behavior of single crystals, the hot-pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ exhibited ntype conduction without addition of donor dopant. When $Bi_2(Te_{0.85}Se_{0.15})_3$powders were annealed in (50% $H_2$ + 50% Ar) atmosphere, the hot-pressed specimen exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Among the Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$fabricated by mechanical alloying and hot pressing, $Bi_2(Te_{0.85}Se_{0.15})_3$ exhibited a maximum figure-of-merit of 1.92 $\times$ $lO^{-3}$/K.

  • PDF

Effects of steam blanching pretreatment on quality of spray-dried powders prepared from pressed juice of garlic chives (부추의 증숙처리가 착즙액 분무건조 분말의 품질에 미치는 영향)

  • Chung, Hun-Sik;Kim, Han-Soo;Kim, Dong-Seob;Lee, Young-Guen;Seong, Jong-Hwan
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.385-391
    • /
    • 2015
  • This study was conducted to develop a spray-dried garlic chives (Allium tuberosum) powder and to evaluate its quality characteristics depending on the treatment of steam blanching pretreatment $100^{\circ}C$, 3 min) and the addition of forming agents (dextrin (DE=10), ${\beta}$-cyclodextrin) during process. The steam blanching pretreatment showed an increase in $L^*$ value while a decrease in $-a^*$, $b^*$, $C^*$, and $h^o$ values of the powder. Moisture content and water soluble index were not affected by the treatment of steam blanching and the addition of forming agents, whereas the particle diameter was the smallest in the steam blanching treatment and dextrin addition. Chlorophyll, phenolic compound, and vitamin C content, and DPPH radical scavenging activity of non-pretreated powder were significantly higher than those of the steam blanching treated powders. However, there was no significant difference between the two forming agents. The sensory acceptability (color, smell, and overall acceptability) of powder treated with steam blanching were significantly higher than those of non-pretreated powders. Therefore, the steam blanching pretreatment of fresh garlic chives affected on the better quality characteristics of the spray-dried powders when compared with non-pretreated powder though it adversely affected the natural chemical quality of fresh garlic chives.

The Study of Plate Powder Coated Nano Sized ZnO Synthesis and Effect of Sensory Texture Improvement (나노 ZnO 입자가 코팅된 판상 분체의 합성과 사용감 증진 효과에 대한 연구)

  • Jin-Hwa , Lee;Ju-Yeol, Han;Sang-Gil, Lee;Hyeong-Bae, Pyo;Dong-Kyu, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2004
  • Nano sized ZnO particle as 20-30nm applies for material, pigments, rubber additives, gas sensors, varistors, fluorescent substance as well as new material such as photo-catalyst, sensitizer, fluorescent material. ZnO with a particle size in the range 20-30nm has provided to be an excellent UV blocking material in the cosmetics industry, which can be used in sunscreen product to enhance the sun protection factor and natural makeup effect. But pure ZnO particles application limits for getting worse wearing feeling. We make high-functional inorganic-composite that coated with nano-ZnO on the plate-type particle such as sericite, boron nitride and bismuthoxychloride. In this experiment, we synthesized composite powder using hydrothermal precipitation method. The starting material was ZnCl$_2$ Precipitation materials were used hexamethylenetetramine(HMT) and urea. We make an experiment with changing as synthesis factors that are concentrations of starting material, precipitation materials, nuclear formation material, reaction time, and reaction temperature. We analyzed composite powder's shape, crystallization and UV-blocking ability with FE-SEM, XRD, FT-IR, TGA-DTA, In vitro SPF test. The user test was conducted by product's formulator. In the results of this study, nanometer sized ZnD was coated regardless of the type of plate-powder at fixed condition range. When the coated plate-powders were applied in pressed powder product, the glaze of powder itself decreased, but natural make-up effect, spreadability, and adhesionability were increased.