• Title/Summary/Keyword: pressed powder

Search Result 218, Processing Time 0.024 seconds

The New Generation of Hydraulic Presses-Progress in the Forming Process

  • Prommer, Eric
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1276-1277
    • /
    • 2006
  • The ever increasing requirements on today's compacts with regard to their geometry and precision call for flexible high-precision and most capable production systems. DORST Technologies has coped with these requirements by developing the new HP series for pressing forces between 1600 kN and 16000 kN and the new HS series for pressing forces between 150 kN and 1200 kN. These fully hydraulic presses featuring upper ram, lower ram, core rod, filler, up to 4 lower tool levels and up to 4 upper tool levels with closed-loop controlled movements. Thanks to latest servo technology and an electronic bus system it is possible to have all movements closed-loop controlled in the desired relation to each other. Thus, today's hydraulic presses provide high stroke rates, low energy consumption and a user-friendly interface. The input of data is carried out via clearly arranged screen masks on a touch-screen. The innovative DORST $IPG^{(R)}$ (Intelligent Program Generator) has been designed to support the set-up staff in preparing and optimizing the toolprogram. The combination of the machine type with the hydraulic unit determines the productivity in consideration of the specific application and the part to be pressed. Thanks to the closed-loop control circuits, DORST hydraulic automatic presses of the latest generation ensure unmatched precision and repeatability - and consequently process reliability - often without necessitating subsequent machining steps.

  • PDF

Thermoelectric Properties of AlN-doped SiC Ceramics (AlN 첨가 SiC 세라믹스의 열전변환특성)

  • Pai, Chul-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.839-845
    • /
    • 2012
  • The effect of an AlN additive on the thermoelectric properties of SiC ceramics was studied. Porous SiC ceramics with 48-54% relative density were fabricated by sintering the pressed ${\alpha}-SiC$ powder compacts with AlN at $2100-2200^{\circ}C$ for 3 h in an Ar atmosphere. In the undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder. With AlN addition, the reverse phase transformation of 6H-SiC to 4H-SiC was observed during the sintering process. The electrical conductivity of the AlN doped specimen was larger than that of the undoped specimen under the same conditions, which might be due to a reverse phase trans-formation. The Seebeck coefficient of the AlN doped specimen was also larger than that of the undoped specimen. The density of specimen and the amount of addition had significant effects on the thermoelectric properties.

Effect of Pressure on Densification and Transmittance of ZnS in HIP Process (HIP 공정 시 압력 변화가 ZnS의 치밀화와 투과율에 미치는 영향)

  • Gwon, In-He;Jang, Gun-Eik
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.325-330
    • /
    • 2021
  • In this study, a ZnS film of 8-mm thickness was prepared on graphite using a hot-wall-type CVD technique. The ZnS thick film was then hot isostatically pressed under different pressures (125-205 MPa) in an argon atmosphere. The effects of pressure were systematically studied in terms of crystallographic orientation, grain size, density, and transmittance during the HIP process. X-ray diffraction pattern analysis revealed that the preferred (111) orientation was well developed after a pressure of 80 MPa was applied during the HIP process. A high transmittance of 61.8% in HIP-ZnS was obtained under the optimal conditions (1010℃, 205 MPa, 6 h) as compared with a range of approximately 10% for the CVD-ZnS thick film under a 550-nm wavelength. In addition, the main cause of the improvement in transmittance was determined to be the disappearance of the scattering factor due to grain growth and the increase in density.

Synthesis and Magnetic Properties of Nanocrystalline Fe-Ni Alloys During Hydrogen Reduction of NiFe2O4 (NiFe2O4의 수소환원에 의한 나노구조 Fe-Ni 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Nickel ferrite ($NiFe_2O_4$) powder was prepared through the ceramic route by calcination of a stoichiometric mixture of nickel oxide (NiO) and iron oxide ($Fe_2O_3$). The pressed pellets of $NiFe_2O_4$ were isothermally reduced in pure hydrogen at 800, 900, 1000 and $1100^{\circ}C$. Based on thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and various reduction products were characterized by XRD, SEM, reflected light microscope and VSM to reveal the effect of hydrogen reduction on the composition, microstructure, magnetic properties and reaction kinetics of the produced Fe-Ni alloy. Complete reduction of the $NiFe_2O_4$ was achieved with synthesis of homogeneous nanocrystalline Fe-Ni alloys. Arrhenius equation with the approved mathematical formulations for a gas-solid reaction was applied for calculating the activation energy ($E_a$) values and detecting the controlling reaction mechanism.

Effects of the size of Mg powder on the formation of MgB2 and the superconducting properties

  • Kim, D.N.;Jun, B.H.;Park, S.D.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.9-14
    • /
    • 2016
  • The effect of the size and shape of magnesium(Mg) powder on the formation of $MgB_2$ and the critical current density($J_{c,}$) of $MgB_2$ bulk was studied. As a precursor for the formation of $MgB_2$, Mg and $MgB_4$ powder, which was synthesized through the reaction of boron (B) with Mg powders, was used. $MgB_4$ was mixed with Mg powders of various sizes, pressed into pellets and heat-treated at $650^{\circ}C-750^{\circ}C$ in flowing argon gas. The XRD analysis of the heat-treated $MgB_2$ samples showed that the volume fraction of $MgB_2$ was the highest as 92.74 % when spherical Mg powder with an average size of $25.7{\mu}m$ was used, whereas the volume fraction was the lowest as 79.64 % when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The superconducting transition temperature ($T_c$) of $MgB_2$ was not sensitive to the characteristics of the Mg powders used. All of the prepared $MgB_2$ samples showed a high $T_c$ of 38.3 K and a small superconducting transition width of 0.2 K-0.5 K. $J_c$ (5 K and 1 T) of $MgB_2$ was the highest as $3.93{\times}10^4A/cm^2$ when spherical Mg powder with a size of $25.7{\mu}m$ was used, whereas $J_c$ was the lowest as $2.18{\times}10^4A/cm^2$when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The relationship between the $J_c$ of $MgB_2$ and the characteristics of the Mg powders used was explained in terms of the volume fraction of $MgB_2$ and the apparent density of the $MgB_2$ pellets.

Graphitic Mesostructured Carbon from an Aliphatic Hydrocarbon Precursor

  • Kim, Chy-Hyung;Oh, Teresa
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1978-1980
    • /
    • 2009
  • A mesostructured form of carbon was fabricated from a template of mesostructured silica by using pentane, an aliphatic hydrocarbon precursor. To synthesize the mesostructured silica, a buffered (pH of 6.5) mixture of nonionic Pluronic P123 surfactant, sodium silicate, and acetic acid were used. The impregnated silica with Fe$(CO)_5$ (wt 5%) and pentane was placed in a quartz tube, treated with pentane vapor at 800 ${^{\circ}C}$ for two hours to synthesize the mesostructured carbon. The XRD patterns of the carbon replica in the low/wide angle regions, its TEM images, and nitrogen adsorption-desorption isotherm revealed that the long-range framework order of mesostructure with the pore size centered on 2.8 nm was maintained to some extent mainly due to some portions of mesophase carbon that work as a support to fix the hexagonal frameworks by anchoring on the pore surface with an improved graphitic character. The dc conductivity of the mesostructured carbon in pressed powder form at 6.0 MPa was 2.08 S/cm.

Preparation and Mechanical Properties of 3Y-TZP/SiC Composites (3-TZP/SiC 복합체의 제조 및 기계적 성질)

  • 이홍림;이형민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.877-887
    • /
    • 1992
  • Tetragonal zirconia powder with 3 mol% Y2O3 mas mixed with up to 30 vol% of ${\beta}$-SiC powders, and the mixtures were hot-pressed at 1500$^{\circ}C$ for 60 min under a pressure of 30 MPa in Ar atmosphere. Flexural strength and fracture toughness were measured at room-and high-temperature (1000$^{\circ}C$). Evolution of microstructure was also conducted to investigate the effects of SiC addition on the properties of 3Y-TZP ceramics. Average grain size of the composites was about 0.5 $\mu\textrm{m}$, and decreased with SiC addition. Both room- and high-temperature mechanical properties of the composites were improved with SiC content. Particularly, high-temperature strength and fracture toughness of 3Y-TZP/30v/o SiC composite were twice as high as those of 3Y-TZP. The hardness of the composites also increased with SiC content and reached maximum value at 3Y-TZP/30v/o SiC composite.

  • PDF

STUDY ABOUT A CONNECTIVE METHOD OF HIGH Tc SUPERCONDUCTING WIRE FOR LONG WIRE (고온 초전도 선재의 장선화를 위한 접속에 관한 연구)

  • 임성훈;강형곤;이재윤;임성우;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.222-224
    • /
    • 1997
  • This study is about a connective method of High Tc wire for long wire. We prepared silver-sheathed BiPbSrCaCuO wires by the powder-in-tube method. Since the superconducting wires are ceramic, it is very hard to connect each other. In this study, we used a silver sleeve to contract wires and pressed them by various preasures. Then optimum preasure was 9,000 Kgf/$\textrm{cm}^2$ to get the high critical current. The higest critical current was 10A.

  • PDF

Physicochemical Characteristics and Oxidative Stabilities of Defatted Mealworm Powders under Different Manufacturing Conditions (제조 방법을 달리한 갈색거저리 유충 탈지 분말의 물리화학적 특성 및 저장 안정성)

  • Son, Yang-Ju;Hwang, Ja-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.2
    • /
    • pp.194-203
    • /
    • 2017
  • Mealworm, a type of edible insect, is a superior food material suitable for industrial products. In this study, four different defatted mealworm powders were prepared to determine proper manufacturing conditions. Solvent extraction method reduced lipid contents of mealworms more than pressed mealworms, and lowered lipid contents caused bright colors and good physicochemical properties for powders. In comparison, differences among milling machines used for making powders were strongly related with average size of particles. Meanwhile, the predicted shelf-life of defatted mealworm powders judged by accelerated experiments was 1 year or longer. To enhance shelf-life of mealworm powders, addition of tocopherol to mealworm powders at a concentration of 0.2% could intensify oxidative stability and microbial inhibition.

Dissociation of Thymine by Low-Energy Electrons

  • Cho, Hyuck;Noh, Hyung-Ah
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.11-15
    • /
    • 2020
  • Background: There have been various studies to investigate the mechanisms of DNA damage from low-energy electrons. To understand the mechanism of these strand breaks, it is necessary to investigate the dissociation mechanism of the DNA constituents, that is, bases, sugars, and phosphates. Materials and Methods: We studied the dissociation of thymine base upon interaction with low-energy electrons. For this experiment, thymine powder was pressed onto the indium base and irradiated by 5 eV electrons. Results and Discussion: Non-irradiated and irradiated thymine samples were compared and analyzed using the X-ray photoelectron spectroscopic technique to analyze the dissociation patterns of the molecular bonds after low-energy electron irradiation of thymine. Conclusion: With 5 eV electron irradiation, C-C and N-C = O bonds are the primary dissociations that occur in thymine molecules.