DOI QR코드

DOI QR Code

Effects of the size of Mg powder on the formation of MgB2 and the superconducting properties

  • Kim, D.N. (Korea Atomic Energy Research Institute) ;
  • Jun, B.H. (Korea Atomic Energy Research Institute) ;
  • Park, S.D. (Korea Atomic Energy Research Institute) ;
  • Kim, C.J. (Korea Atomic Energy Research Institute) ;
  • Park, H.W. (Korea University of Technology and Education)
  • Received : 2016.10.31
  • Accepted : 2016.12.11
  • Published : 2016.12.31

Abstract

The effect of the size and shape of magnesium(Mg) powder on the formation of $MgB_2$ and the critical current density($J_{c,}$) of $MgB_2$ bulk was studied. As a precursor for the formation of $MgB_2$, Mg and $MgB_4$ powder, which was synthesized through the reaction of boron (B) with Mg powders, was used. $MgB_4$ was mixed with Mg powders of various sizes, pressed into pellets and heat-treated at $650^{\circ}C-750^{\circ}C$ in flowing argon gas. The XRD analysis of the heat-treated $MgB_2$ samples showed that the volume fraction of $MgB_2$ was the highest as 92.74 % when spherical Mg powder with an average size of $25.7{\mu}m$ was used, whereas the volume fraction was the lowest as 79.64 % when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The superconducting transition temperature ($T_c$) of $MgB_2$ was not sensitive to the characteristics of the Mg powders used. All of the prepared $MgB_2$ samples showed a high $T_c$ of 38.3 K and a small superconducting transition width of 0.2 K-0.5 K. $J_c$ (5 K and 1 T) of $MgB_2$ was the highest as $3.93{\times}10^4A/cm^2$ when spherical Mg powder with a size of $25.7{\mu}m$ was used, whereas $J_c$ was the lowest as $2.18{\times}10^4A/cm^2$when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The relationship between the $J_c$ of $MgB_2$ and the characteristics of the Mg powders used was explained in terms of the volume fraction of $MgB_2$ and the apparent density of the $MgB_2$ pellets.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39K in magnesium diboride," Nature, vol. 410, pp. 63, 2001. https://doi.org/10.1038/35065039
  2. D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas, "Strongly linked current flow in polycrystalline forms of the superconductor $MgB_2$," Nature, vol. 410, pp. 186-189, 2001. https://doi.org/10.1038/35065559
  3. M. Eisterer, M. Zehetmayer and H. W. Weber, "Current percolation and anisotropy in polycrystalline $MgB_2$," Phys. Rev. Lett., vol. 90, pp. 247002 , 2003. https://doi.org/10.1103/PhysRevLett.90.247002
  4. Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka and M. Murakami, "Anisotropic superconducting properties of $MgB_2$ single crystals probed by in-plane electrical transport measurements," Phys. Rev., vol. 65, pp. 140501, 2002. https://doi.org/10.1103/PhysRevB.65.140501
  5. A. V. Pan, S. Zhou, H. Liu and S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003. https://doi.org/10.1088/0953-2048/16/5/317
  6. C. U. Jung, M. S. Park, M. S. Kim, J. H. Choi, W. N. Kang, H. P. Kim and S. I. Lee, "High-pressure sintering of highly dense $MgB_2$ and its unique pinning properties," Surr. Appl. Phys., vol. 1, pp. 327-331, 2001.
  7. B. A. Glowacki, m. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. Mcdougall. "Superconductivity of powder-in-tube $MgB_2$ wires," Supercond. Sci. Technol., vol 14, pp. 193-199, 2001. https://doi.org/10.1088/0953-2048/14/4/304
  8. A. Tampieri, G. Celotti, S. Sprio, R. Caciuffo and D. Rinaldi, "Study of the sintering behavior of $MgB_2$ superconductor during hot-pressing," Physica C, vol 400, pp. 97-104, 2004. https://doi.org/10.1016/S0921-4534(03)01310-8
  9. E. Martinez, L. A. Angurel and R. Navarro, "Study of Ag and Cu/$MgB_2$ powder-in-tube composite wires fabricated by In situ reaction at low temperature," Supercond. Sci. Technol., vol. 15, pp. 1043-1047, 2002. https://doi.org/10.1088/0953-2048/15/7/309
  10. B. H. Jun and C. J. Kim. "The effect of heat-treatment temperature on the superconducting properties of malic acid-doped $MgB_2$/Fe wire," Supercond. Sci. Technol., vol. 20, pp. 980-985, 2007. https://doi.org/10.1088/0953-2048/20/10/015
  11. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007. https://doi.org/10.1088/0953-2048/20/5/007
  12. A. Yamamoto, J. I. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, "Improved critical current properties observed in $MgB_2$ bulk synthesized by low-temperature solid-state reaction," Supercond. Sci. Tehchnol., vol. 18, pp. 116-121, 2004.
  13. J. H. Ahn and S. Oh, "Pore structures and grain connectivity of bulk $MgB_2$," Physica C, vol. 469, pp. 1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190
  14. C. F. Liu, G. Yan, S. J. Du, W. Xi, Y. Feng, P. X. Zhang, X. Z. Wu and L. Zhou, "Effect of heat-treatment temperatures on density and porosity in $MgB_2$ superconductor," Physica C, vol. 386, pp. 603-606, 2003. https://doi.org/10.1016/S0921-4534(02)02170-6
  15. W. Goldacker, S. I. Schlachter, B. Obst and M. Eisterer. "In-situ $MgB_2$ round wires with improved properties," Supercond. Sci. Technol., vol. 17, pp. S490-495, 2004. https://doi.org/10.1088/0953-2048/17/9/006
  16. G. S. Brady and H. R. Clauser, Materials Handbook, 12th ed., vol. 15. McGraw-Hill, 1956, pp. 104-105
  17. C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo, "Reaction-induced pore formation and superconductivity in in situ processed $MgB_2$ superconductors," Physica C, vol. 502, pp. 4-99, 2014. https://doi.org/10.1016/j.physc.2014.04.006
  18. S. C. Yan, G. Yan, C. F. Liu, Y. F. Lu and L. Zhou, "Experimental study on the phase formation for the Mg-B system in Ar atmosphere," J. Alloys Compd., vol. 437, pp. 298-301, 2007. https://doi.org/10.1016/j.jallcom.2006.07.112
  19. K. S. Tan, N. K. Kim, Y. J. Kim, B. H. Jun and C.J Kim, "Influence of magnesium powder and heat treatment on the superconducting properties of $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 21, pp. 015015, 2008. https://doi.org/10.1088/0953-2048/21/01/015015
  20. D. Wang, W. Ma, Z. Yu, Z. Gao, X. Zhang, K. Watanabe and E. Mossang, "Strong influence of precursor powder on the critical current density of Fe-sheathed $MgB_2$ tapes," Supercond. Sci. Technol., vol. 20, pp. 574-578, 2007. https://doi.org/10.1088/0953-2048/20/6/015
  21. K. S. Tan, B. H. Jun and C.J Kim, "Superconducting properties of a $MgB_2$ bulk formed by using a $MgB_4$ + Mg mixture," J. Korean. Phys. Soc., vol. 54, pp. 1626-1629, 2009. https://doi.org/10.3938/jkps.54.1626
  22. S. C. Yan, G. Yan, C. F. Liu, Y. F. Lu and L. Zhou, "Experimental study on phase transformation between $MgB_2$ and $MgB_4$," J. Am. Ceram. Soc., vol. 90, pp. 2184-2188, 2007. https://doi.org/10.1111/j.1551-2916.2007.01664.x
  23. C.L. Tan, K. Y. Tan, K. P. Lim, A. H. Shaari and S. K. Chen, "Optimization of phase formation and superconducting properties in $MgB_2$ prepared by phase transformation from $MgB_4$," J. Electronic Materials, vol. 41, pp. 673-678, 2012. https://doi.org/10.1007/s11664-012-1902-3
  24. G. Yan, Y. Feng, B. Q. Fu, C. F. Liu, P. X. Zhang, X. Z. Wu, L. Zhou, Y. Zhao and A. K. Pradhan, "Effect of synthesis temperature on density and microstructure of $MgB_2$ superconductor at ambient pressure," J. Material. Sci., vol. 39, pp. 4893-4898, 2004. https://doi.org/10.1023/B:JMSC.0000035330.61185.fb
  25. D. X. Chen and R. B. Goldfarb "Kim model for magnetization of type II superconductors," J. Appl. Phys., vol. 66, pp. 2489, 1989. https://doi.org/10.1063/1.344261
  26. J. H. Yi, K. T Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp. 1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190
  27. P. Mikheenko, E. Martinez, A. Bevan1, J. S. Abell1 and J. L. MacManus-Driscoll, "Grain boundaries and pinning in bulk $MgB_2$," Supercond. Sci. Technol., vol. 20, pp.S264-S270, 2007. https://doi.org/10.1088/0953-2048/20/9/S22
  28. A. Yamamoto, J. I. Shimoyama, K. Kishio and T. Matsushita, "Limiting factors of normal-state conductivity in superconducting $MgB_2$: an application of mean-field theory for a site percolation problem," Supercond. Sci. Technol., vol. 20, pp. 658-666, 2007. https://doi.org/10.1088/0953-2048/20/7/012
  29. T. Matsushita, M. Kiuchi, A. Yamamoto, J. I. Shimoyama and K. Kishio, "Essential factors for the critical current density in superconducting $MgB_2$: connectivity and flux pinning by grain boundaries," Supercond. Sci. Technol., vol. 21, 015008, 2008. https://doi.org/10.1088/0953-2048/21/01/015008
  30. A. Serquis, X. Y. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Willis, D. E. Peterson, F. M. Mueller, N. O. Moreno J. D. Thompson, S. S. Indrakanti and V. F. Nesterenko " The influence of microstructures and crystalline defects on the superconductivity of $MgB_2$," J. Appl. Phys., vol. 92, pp. 351-356, 2002. https://doi.org/10.1063/1.1479470
  31. A. Serquis, Y. T. ZhuE. J. Peterson, J. Y. Coulter, D. E. Peterson and F. M. Mueller "Effect of lattice strain and defect on the superconductivity of $MgB_2$," Appl. Phys. Lett., vol. 79, pp. 4399, 2001. https://doi.org/10.1063/1.1428109

Cited by

  1. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI) vol.88, pp.8, 2017, https://doi.org/10.1063/1.4997257
  2. low activation superconductor vol.6, pp.30, 2018, https://doi.org/10.1039/C8TC02300J
  3. Cryogenic milling for the fabrication of high Jc MgB2 bulk superconductors vol.19, pp.2, 2016, https://doi.org/10.9714/psac.2017.19.2.019
  4. Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors vol.21, pp.1, 2016, https://doi.org/10.9714/psac.2019.21.1.018
  5. Commercial MgB2 superconducting wires at Sam Dong vol.22, pp.2, 2020, https://doi.org/10.9714/psac.2020.22.2.026
  6. Superconducting properties of MgB2 bulks using the different sizes of Mg & B raw powders vol.22, pp.4, 2020, https://doi.org/10.9714/psac.2020.22.4.020