Speech coding techniques have been studied to reduce the complexity and bit rate but also to improve the sound quality. CELP type vocoder, has used as a one of standard, supports the great sound quality even low bit rate. In this paper, the preprocessing of input speech to reduce the bit rate is the different with the conventional vocoder. The different kinds of parameter are used for the preprocessing so this paper is compared with theses parameters for finding the more appropriate parameter for the vocoder. The parameters are used to synthesize the speech not to encode or decode for coding technique so we proposed the simple algorithm not to have the influence on the processing time or the computation time. The parameters in used the preprocessing step are speaking rate, duration and PSOLA technique.
본 논문에서 Equirectangular Projection(ERP) 영상으로 행동 인식을 할 때의 문제점들을 해결할 수 있는 전처리 기법을 제안한다. 본 논문에서 제안하는 전처리 기법은 사람 객체를 행동의 주체 즉, Object of Interest(OOI)로 가정하고, OOI의 주변 영역을 ROI로 가정한다. 전처리 기법은 3개의 모듈로 이루어져 있다. I) 객체 인식 모델로 영상 내 사람 객체를 인식한다. II) 입력 영상에서 saliency map을 생성한다. III) 인식된 사람 객체와 saliency map을 이용하여 행동의 주체를 선정한다. 이후 행동 인식 모델에 선정된 행동의 주체 boundary box를 입력하여 행동 인식 성능을 높인다. 제안하는 전처리기법을 사용한 데이터를 행동 인식 모델에 입력한 방법의 성능과 원본 ERP 영상을 입력한 방법의 성능을 비교하였을 때 최대 99.6%의 성능 향상을 보이며, OOI가 감지되는 프레임만을 추출하였을 때 행동 관련 영상 요약의 효과도 볼 수 있다.
Preprocessing is the essential technique in the implementation of the simplex method for large scale linear programming problems. In this research, we explained the effect of preprocessing in the simplex method, classified the techniques into four categories, and compared our results with those of HOPDM, CPLEX and Soplex by computational experiments. We also noted some implementing issues of preprocessing for the simplex method and the recovery of the optimal basis of the original problem from that of the preprocessed problem.
본 논문에서는 복잡한 배경영상에서 움직이는 물체를 자동으로 추적하는 표적중심 추적기의 효과적인 전처리 방법을 제안하였다. 이진 표적중심 추적기의 성능은 다음과 같은 요소가 추적성능을 좌우한다: (1) 효과적인 실시간 전처리 방법 (2) 복잡한 배경영상에서의 정확한 표적 추출방법 (3) 지능적인 표적창 크기 조절법. 본 논문에서 제안하는 표적중심 추적기는 배경과 움직이는 표적을 좀 더 쉽게 판별할 수 있도록 추적필터를 이용한 효과적인 실시간 전처리 방법에 의한 적응적인 표적분할방법을 사용한다. 효과적인 전처리 방법이란 추적필터에 의해 추정된 표적중심을 중심으로 입력영상에 다른 가중치를 줌으로써 표적과 배경을 더 쉽게 분리할 수 있다. 제안한 방법은 합성영상 및 실제 적외선 영상을 이용한 다양한 추적실험을 통하여 그 효용성 및 성능을 검증하였다.
최근 정보통신기술을 농업과 접목해 새로운 가치를 창출하는 스마트팜 연구가 활발하게 진행되고 있다. 국내 스마트팜 기술이 농업 선진국 수준의 생산성을 가지기 위해서는 기계 학습을 활용한 자동화된 의사결정이 필요하다. 그러나 현재의 스마트 온실 데이터 수집 기술은 빅데이터 분석이나 기계 학습을 수행하기에 충분하지 않다. 본 논문에서는 자율 기계 학습을 위한 스마트 온실 데이터 전처리 시스템을 설계하고 구현한다. 제안하는 시스템은 대상 데이터를 다양한 전처리 기법에 적용하고 평가를 수행하여 최적 전처리 기법을 탐색하고 저장한다. 이렇게 탐색 된 최적 전처리 기법은 새롭게 수집된 데이터에 대하여 전처리를 수행하는데 활용된다.
Preprocessing is indispensable to eliminate local granularities prior to region growing. In this paper, we examined the effects of preprocessing in S&M region growing technique. Experimental results show that a modified Nagao filter removes the local granularities well and compensates for the defects of Nagao filter.
In this paper we derive a new VAD algorithm, which combines the preprocessing algorithm and the optimum decision rule. To improve the performance of the VAD algorithm we employ the speech enhancement algorithm and then apply the maximal ratio combining technique in the preprocessing procedure, which leads to maximized output SNR. Moreover, we also perform extensive computer simulations to demonstrate the performance improvement of the proposed algorithm under various background noise environments.
A preprocessing scheme utilizing multi-division of the ROI (region of interest) in a chemiluminescence image during inversion is proposed. The resulting inverted image shows the flame's structure, which can be useful for studying combustion instability. The flame structure is often quantitatively visualized with PLIF (planar laser-induced fluorescence) images as well. The chemiluminescence image, which is a line-integral of the flame, needs to be preprocessed before inversion, mainly due to the inherent noise and the assumption of axisymmetry during the inversion. The feasibility of the multi-division preprocessing technique has been tested with experimentally-obtained OH PLIF and $OH^*$ chemiluminescence images of jet and swirl-stabilized flames burning substitute natural gas (SNG). It turns out that the technique outperforms two conventional methods, specifically, the technique without preprocessing and the one with uni-division, reconstructing the SNG flame structures much better than its two counterparts when compared using corresponding OH PLIF images. The characteristics of the optimum degree of polynomials to be applied for curve-fitting of the flame region data for the multi-division method involving two flames has also been investigated.
Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.
Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.