References
-
J. Gutierrez, E. J. David, A. Coutrot, M. P. Da Silva, and P. L. Callet. 2018. Introducing UN Salient360! Benchmark: A platform for evaluating visual attention models for
$360^{\circ}$ contents. In 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). 1-3. https://doi.org/10.1109/QoMEX.2018.8463369 - Hou-Ning H., Yen-Chen L., Ming-Yu L., Hsien-Tzu C., Yung-Ju C., Min Sun. Deep 360 pilot: Learning a deep agent for piloting through 360 sports videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 1396-1405. 2017.
- Hyun-Joon R, SungWon H, Eun-Seok R. "Prediction complexitybased HEVC parallel processing for asymmetric multicores." Multimedia Tools and Applications 76, 23, pp.25271-25284. 2017. https://doi.org/10.1007/s11042-017-4413-7
- Hyun-Joon R, Bok-Gi L, Eun-Seok R. "Tile Partitioning and Allocation for HEVC Parallel Decoding on Asymmetric Multicores." The Journal of Korean Institute of Communications and Information Sciences (J-KICS), Vol.43, No.05, pp. 791-800. 2018. https://doi.org/10.7840/kics.2018.43.5.791
- Seehwan Y, Eun-Seok R. "Parallel HEVC decoding with asymmetric mobile multicores." Multimedia Tools and Applications 76, 16, pp.17337-17352. 2017. https://doi.org/10.1007/s11042-016-4269-2
- Robert S, Yago S, Karsten S, Thomas S, Eun-Seok R, Jangwoo S. "Temporal MCTS Coding Constraints Implementation." 122th MPEG meeting of ISO/IEC JTC1/SC29/ WG11, MPEG 122/m42423. 2018.
- Jang-Woo S, Dongmin J, Eun-Seok R. "Implementing Motion-Constrained Tile and Viewport Extraction for VR Streaming." ACM Network and Operating System Support for Digital Audio and Video 2018 (NOSSDAV2018). 2018.
- Jang-Woo S, Eun-Seok R. "Tile-Based 360-Degree Video Streaming for Mobile Virtual Reality in Cyber Physical System." Elsevier, Computers and Electrical Engineering. 2018.
- Jong-Beom J., Soonbin L., Dongmin J, Il-Woong R., Tuan T. L., Jaesung R., Eun-Seok R."Implementing Multi-view 360 Video Compression System for Immersive Media", The Korean Institute of Broadcast and Media Engineers (KIBME) Summer Conference, pp.139-142, Jun. pp.19-21, 2019.
- JongBeom J, Dongmin J, Jangwoo S, Eun-Seok R, "3DoF+ 360 Video Location based Asymmetric Down-sampling for View Synthesis to Immersive VR Video Streaming", MDPI, Sensors, 18(9):3148, Sep. 2018. https://doi.org/10.3390/s18093148
- Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, (11), 1254-1259.
- Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision research, 40(10-12), 1489-1506. https://doi.org/10.1016/S0042-6989(99)00163-7
- Itti L. Koch C. Niebur E. (1998). A model for saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1254-1259. https://doi.org/10.1109/34.730558
- Parkhurst D. Law K. Niebur E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42, 107-123. https://doi.org/10.1016/S0042-6989(01)00250-4
- Hou, X., & Zhang, L. (2007, June). Saliency detection: A spectral residual approach. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). Ieee.
- Hou, X., Harel, J., & Koch, C. (2011). Image signature: Highlighting sparse salient regions. IEEE transactions on pattern analysis and machine intelligence, 34(1), 194-201. https://doi.org/10.1109/TPAMI.2011.146
- Schauerte, B., & Stiefelhagen, R. (2012, October). Quaternion-based spectral saliency detection for eye fixation prediction. In European Conference on Computer Vision (pp. 116-129). Springer, Berlin, Heidelberg.
- Li, J., Levine, M. D., An, X., Xu, X., & He, H. (2012). Visual saliency based on scale-space analysis in the frequency domain. IEEE transactions on pattern analysis and machine intelligence, 35(4), 996-1010. https://doi.org/10.1109/TPAMI.2012.147
- Huang, X., Shen, C., Boix, X., & Zhao, Q. (2015). Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 262-270).
- Kruthiventi, S. S., Ayush, K., & Babu, R. V. (2017). Deepfix: A fully convolutional neural network for predicting human eye fixations. IEEE Transactions on Image Processing, 26(9), 4446-4456. https://doi.org/10.1109/TIP.2017.2710620
- Pan, J., Sayrol, E., Giro-i-Nieto, X., McGuinness, K., & O'Connor, N. E. (2016). Shallow and deep convolutional networks for saliency prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 598-606).
- Wang, L., Wang, L., Lu, H., Zhang, P., & Ruan, X. (2016, October). Saliency detection with recurrent fully convolutional networks. In European conference on computer vision (pp. 825-841). Springer, Cham.
- Cornia, M., Baraldi, L., Serra, G., & Cucchiara, R. (2018). Predicting human eye fixations via an lstm-based saliency attentive model. IEEE Transactions on Image Processing, 27(10), 5142-5154. https://doi.org/10.1109/tip.2018.2851672
- Wang, L., Qiao, Y., & Tang, X. (2015). Action recognition with trajectory-pooled deep-convolutional descriptors. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4305-4314).
- Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In Advances in neural information processing systems (pp. 568-576).
- Du, Y., Wang, W., & Wang, L. (2015). Hierarchical recurrent neural network for skeleton based action recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1110-1118).
- Li, C., Wang, P., Wang, S., Hou, Y., & Li, W. (2017, July). Skeleton-based action recognition using LSTM and CNN. In 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (pp. 585-590). IEEE.
- Soo-Yeun S., Joo-Heon C. Human Action Recognition System Using Multi-Mode Sensor and LSTM-based Deep Learning. Transactions of the Korean Society of Mechanical Engineers A, 42(2), pp.111-121. 2018. https://doi.org/10.3795/ksme-a.2018.42.2.111
- Janghak C., Jeongmin S., Sang-il C. "Analysis of Action Recognition Performance According to Depth of Deep Neural Network." Korean Institute of Information Scientists and Engineers (KIISE), pp.1827-1829. 2018.
- Sang-Jo K., Shao-Heng K., Eui-Young C. "Improved the action recognition performance of hierarchical RNNs through reinforcement learning." Korea Society of Computer Information. 26(2), pp. 360-363. 2018.
- Rouast, P. V., & Adam, M. T. (2019). Learning deep representations for video-based intake gesture detection. arXiv preprint arXiv: 1909.10695. https://doi.org/10.1109/jbhi.2019.2942845
- Jhuang, H., Gall, J., Zuffi, S., Schmid, C., & Black, M. J. (2013). Towards understanding action recognition. In Proceedings of the IEEE international conference on computer vision (pp. 3192-3199).
- Bregonzio, M., Li, J., Gong, S., & Xiang, T. (2010, September). Discriminative Topics Modelling for Action Feature Selection and Recognition. In BMVC (pp. 1-11).
- Arseneau, S., & Cooperstock, J. R. (1999, August). Real-time image segmentation for action recognition. In 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No. 99CH36368) (pp. 86-89). IEEE.
- Niu, F., & Abdel-Mottaleb, M. (2004, December). View-invariant human activity recognition based on shape and motion features. In IEEE Sixth International Symposium on Multimedia Software Engineering (pp. 546-556). IEEE.
- Sudhakaran, S., Escalera, S., & Lanz, O. (2019). Lsta: Long short-term attention for egocentric action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9954-9963).
- Sharma, S., Kiros, R., & Salakhutdinov, R. (2015). Action recognition using visual attention. arXiv preprint arXiv:1511.04119.
- Berlin, S. J., & John, M. (2016, October). Human interaction recognition through deep learning network. In 2016 IEEE International Carnahan Conference on Security Technology (ICCST) (pp. 1-4). IEEE.
- Sydorov, V., Alahari, K., & Schmid, C. (2019, September). Focused Attention for Action Recognition.
- Su, Y. C., & Grauman, K. (2017). Learning spherical convolution for fast features from 360 imagery. In Advances in Neural Information Processing Systems (pp. 529-539).
- Su, Y. C., & Grauman, K. (2019). Kernel transformer networks for compact spherical convolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9442-9451).
- Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- Cornia, M., Baraldi, L., Serra, G., & Cucchiara, R. (2018). SAM: Pushing the Limits of Saliency Prediction Models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 1890-1892).
- Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402.