• 제목/요약/키워드: premixed laminar flame

검색결과 140건 처리시간 0.022초

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구 (Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel)

  • 오태균;정석호
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

산소부화와 희석제에 따른 비예혼합 화염의 안정성 (Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame)

  • 배정락;이병준
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

메탄 비예혼합 상호작용 화염의 특성 (Characteristics of Methane Non-Premixed Multiple Jet Flames)

  • 김진현;이병준
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.

레이저 유도 선해리 형광법과 래일레이 산란법에 의한 층류 비예혼합 수소/질소 화염의 온도 및 라디칼 특성에 관한 연구 (A Study on Characteristics of Temperature and Radicals in Laminar Non-premixed H2/N2 Flame Using LIPF and LRS)

  • 진성호;박경석;김군홍;김경수
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.169-180
    • /
    • 2002
  • Rayleigh scattering and laser induced predissociative fluorescence are used to obtain two-dimensional images of temperature and species concentration in a laminar non-premixed flame of a diluted hydrogen jet. Rayleigh scattering cross-sections are experimentally obtained at 248nm. Planar images of OH and $O_2$ with tunable KrF excimer laser which has a) $0.5cm^{-1}$ linewidth, b) 0.5nm tuning range, c) 150mJ pulse energy, and d) 20ns pulse width are obtained to determine spatial distributions of OH and $O_2$. The technique is based on planar laser induced predissociative fluorescence (PLIPF) in which collisional quenching is almost avoided because of the fast predissociation. Dispersed LIPF spectra of OH and $O_2$ are also measured in a flame in order to confirm the excitation of single vibronic state of OH and $O_2$. OH and $O_2$ are excited on the $P_2$(8) and $Q_1$(11) line of the $A^2{\Sigma}^{+}({\nu}^{'}=3)-X^{2}{\Pi}({\nu}^{''}=o)$ band and R(17) line of the Schumann-Runge band $B^{3}{\Sigma}_{u}{^-}(\nu^{'}=0)-X^{3}{\Sigma}_{g}{^-}({\nu}^{''}=6)$, respectively. Fluorescence spectra of OH and Hot $O_2$ are captured and two-dimensional images of the hydrogen flame field are successfully visualized.

메탄/공기 층류 부분예혼합화염의 상세 라디칼(OH*, CH* 그리고 C2*) 정보와 배기매출물에 관한 실험적 연구 (Detailed Local Chemiluminescence Measurement (OH*, CH* and C2*) and Nitrogen Oxides Emissions in Laminar Partially Premixed CH4/Air Flames)

  • 정용기;오정석;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.263-270
    • /
    • 2005
  • An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from $0.79{\sim}{\infty}$, on NOx emissions and chemiluminescence of excited $OH^{\ast},\;CH^{ast}\;C_2^{\ast}$ radicals in laminar partially premixed flames. the signal from the electronically excited state of $OH^{\ast},\;CH^{ast}\;C_2^{\ast}$ was detected through a band pass filter with a photo multiplier tube, which are processed to the intensity ratio ($C_2^{\ast}/CH^{\ast},\;C_2^{\ast}/OH^{\ast},\;and\;CH^{\ast}/OH^{\ast}$) to reveal the correlation with local equivalence ratio. And measurements of NOx emission were made to investigate the relationship between visible flame appearance, chemiluminescence, and EINOX. The results demonstrated that (1) the flames at ${\phi}<1.59$ exhibited classical double flame structure, at ${\phi}>4.76$, the flames exhibited diffusion flame structure, and the intermediate flames at $1.59<{\phi}<4.76$ was a merged flame, (2) the $OH^{\ast}$ peak was located inside the $CH^{\ast}\;and\;C_2^{\ast}$ radical for all measured conditions and the emission intensity ratio of $C_2^{\ast}/CH^{\ast}\;and\;C_2^{\ast}/OH^{\ast}$ were identified as good marker for local equivalence ratio over a range of ${\phi}=0.79{\sim}1.2\;and\;CH^{\ast}/OH^{\ast}\;is\;0.79<{\phi}<1.9$. However, it was difficult to predict the equivalence ratio in partially premixed flames using this system for ${\phi}>2.38$, (3) the minimum NOX emission index (EINOx) is obtained for a equivalence ratio of 3.19 in the intermediate flames.

산소부화 조건인 CH4/CH3Cl/O2/N2 예혼합 화염에서 CH3Cl의 영향 (The Influence of CH3Cl on CH4/CH3Cl/O2/N2 Premixed Flames Under the O2 Enrichment)

  • 신성수;이기용
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.255-262
    • /
    • 2005
  • A comprehensive experimental and numerical study has been conducted to understand the influence of $CH_{3}Cl$ addition on $CH_4/O_2/N_2$ premixed flames under the oxygen enrichment. The laminar flame speeds of $CH_4/CH_{3}Cl/O_2/N_2$ premixed flames at room temperature and atmospheric pressure are experimentally measured using Bunsen nozzle flame technique, varying the amount of $CH_{3}Cl$ in the fuel, the equivalence ratio of the unburned mixture, and the level of the oxygen enrichment. The flame speeds predicted by a detailed chemical kinetic mechanism employed are found to be in excellent agreement with those deduced from experiments. Even though the molar amount of $CH_{3}Cl$ in a methane flame is increased, temperature at the postflame is not significantly varied, but the calculated heat release rate and emission index of NO are largely decreased for the oxygen enhanced flame. The function of $CH_{3}Cl$ as inhibitor on hydrocarbon flames becomes weakened as the level of the oxygen enrichment is increased from 0.21 to 0.5.

예혼합화염의 불안정성 및 비선형적 거동에 관한 수치적 연구 (Numerical Study on the Premixed Flame Instability and Nonlinear Behavior)

  • 강상훈;백승욱;임홍근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.281-286
    • /
    • 2005
  • To understand fundamental characteristics of combustion in a small scale device, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by two-dimensional high-fidelity numerical simulation. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

  • PDF

가연한계 영역에서의 에지 화염 구조 및 고찰 (Discussion of the edge flame structure at the near flammability limits)

  • 이민정;정용진;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.245-246
    • /
    • 2015
  • In this study, the structure of a edge flame near the flammability limits was explored through several paths approaching the combustion limits of a non-premixed flame: i.e., increase of fuel dilution ratio (FDR), reduction of mean flow velocity and variation of gravity effect. As a result, a unique interesting flame structure was discovered; i.e., a diffusion flame branch was enclosed by two asymmetric premixed flame branches. These structures have been compared for various fuels. Conclusively, each fuel has different flame structure and the meaning of this structure was discussed concerned about our understanding of laminar flame structures.

  • PDF

메탄 비예혼합 상호작용 화염의 특성 (Characteristics of methane non-premixed multiple jet flames)

  • 이병준;김진현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1365-1370
    • /
    • 2004
  • It has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single nozzle, the propane non-premixed flames are not extinguished even in 200m/s, In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed case, the maximum blowout velocity for the methane diffusion flame was achieved when small amount of fuel is supplied through the center nozzle and s/d equals around 21. In the laminar region, the flame attached at the center nozzle anchored the outer lifted flames.

  • PDF