• Title/Summary/Keyword: preference-based optimization

Search Result 61, Processing Time 0.021 seconds

Fuzzy Preference Based Interactive Fuzzy Physical Programming and Its Application in Multi-objective Optimization

  • Zhang Xu;Huang Hong-Zhong;Yu Lanfeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.731-737
    • /
    • 2006
  • Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer.

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

Ammunition Allocation Model using an Interactive Multi-objective Optimization(MOO) Method (상호작용 다목적 최적화 방법론을 이용한 전시 탄약 할당 모형)

  • Jeong, Min-Seop;Park, Myeong-Seop
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.513-524
    • /
    • 2006
  • The ammunition allocation problem is a Multi-objective optimization(MOO) problem, maximizing fill-rate of multiple user troops and minimizing transportation time. Recent studies attempted to solve this problem by the prior preference articulation approach such as goal programming. They require that all the preference information of decision makers(DM) should be extracted prior to solving the problem. However, the prior preference information is difficult to implement properly in a rapidly changing state of war. Moreover they have some limitations such as heavy cognitive effort required to DM. This paper proposes a new ammunition allocation model based on more reasonable assumptions and uses an interactive MOO method to the ammunition allocation problem to overcome the limitations mentioned above. In particular, this article uses the GDF procedure, one of the well-known interactive optimization methods in the MOO liter-ature, in solving the ammunition allocation problem.

  • PDF

Maintenance Planning for Deteriorating Bridge using Preference-based Optimization Method (선호도기반 최적화방법을 이용한 교량의 유지보수계획)

  • Lee, Sun-Young;Koh, Hyun-Moo;Park, Wonsuk;Kim, Hyun-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.223-231
    • /
    • 2008
  • This research presents a new maintenance planning method for deteriorating bridges considering simultaneously the minimization of the maintenance cost and maximization of the bridge performance. Optimal maintenance planning is formulated as a multi-objective optimization problem that treats the maintenance cost as well as the bridge performance such as the condition grade of the bridge deck, girder and pier. To effectively address the multi-objective optimization problem and decision making process for the obtained solution set, we apply a genetic algorithm as a numerical searching technique and adopt a preference-based optimization method. A numerical example for a typical 5-span prestressed concrete girder bridge shows that the maintenance cost and the performance of the bridge can be balanced reasonably without severe trade-offs between each objectives.

An Interactive Process Capability-Based Approach to Multi-Response Surface Optimization (대화식 절차를 활용한 공정능력지수 기반 다중반응표면 최적화)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.191-207
    • /
    • 2017
  • Purpose: To develop an interactive version of the conventional process capability-based approach, called 'Interactive Process Capability-Based Approach (IPCA)' in multi-response surface optimization to obtain a satisfactory compromise which incorporates a decision maker(DM)'s preference information precisely. Methods: The proposed IPCA consists of 4 steps. Step 1 is to obtain the estimated process capability indices and initialize the parameters. Step 2 is to maximize the overall process capability index. Step 3 is to evaluate the optimization results. If all the responses are satisfactory, the procedure stops with the most preferred compromise solution. Otherwise, it moves to Step 4. Step 4 is to adjust the preference parameters. The adjustment can be made in two modes: relaxation and tightening. The relaxation is to make the importance of one of the satisfactory responses lower, which is implemented by decreasing its weight. The tightening is to make the importance of one of the unsatisfactory responses higher, which is implemented by increasing its weight. Then, the procedure goes back to Step 2. If there is no response to be adjusted, it stops with the unsatisfactory compromise solution. Results: The proposed IPCA was illustrated through a multi-response surface problem, colloidal gas aphrons problem. The illustration shows that it can generate a satisfactory compromise through an interactive procedure which enables the DM to provide his or her preference information conveniently. Conclusion: The proposed IPCA has two major advantages. One is to obtain a satisfactory compromise which is faithful to the DM preference structure. The other is to make the DM's participation in the interactive procedure easier by using the process capability index in judging satisfaction/unsatisfaction. The process capability index is very familiar with quality practitioners as well as indicates the process performance levels numerically.

A Study on the Optimization for Brokering Between Cargos and Ships (선박을 이용한 화물 운송 중개 최적화 방안 연구)

  • Seo Sang-Koo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2004
  • This paper presents a study on the optimization for brokering between cargos and ships for future e-logistics. The primary contribution of this research is that we establish an optimization model by formalizing the criteria for the brokering such as time constraints, weight constraints, and preference values between cargos and ships. Another important contribution is that we not only investigate the complexity and the tractability of the optimal brokering problem but present how to evaluate the performance of the optimization program through an experiment. We first derive the preference values between cargos and ships using the time and the weight constraints. These preference values between each pair of cargos and ships are assigned to corresponding binary decision variables as coefficients in the objective function. The optimization model selects pairs of cargos and ships in a way that the sum of the preference values is maximized while satisfying given constraints. Experiment shows that the Davis-Putnam based optimization program finds optimal solutions in reasonable time for the problems with less than 90 decision variables.

  • PDF

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Recommendation Algorithm by Item Classification Using Preference Difference Metric (Preference Difference Metric을 이용한 아이템 분류방식의 추천알고리즘)

  • Park, Chan-Soo;Hwang, Taegyu;Hong, Junghwa;Kim, Sung Kwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • In recent years, research on collaborative filtering-based recommendation systems emphasized the accuracy of rating predictions, and this has led to an increase in computation time. As a result, such systems have divergeded from the original purpose of making quick recommendations. In this paper, we propose a recommendation algorithm that uses a Preference Difference Metric to reduce the computation time and to maintain adequate performance. The system recommends items according to their preference classification.

A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS (쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.