• Title/Summary/Keyword: prefabricated system

Search Result 138, Processing Time 0.024 seconds

Behaviour of Multi-Storey Prefabricated Modular Buildings under seismic loads

  • Gunawardena, Tharaka;Ngo, Tuan;Mendis, Priyan
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1061-1076
    • /
    • 2016
  • Prefabricated Modular Buildings are increasingly becoming popular in the construction industry as a method to achieve financially economical buildings in a very short construction time. This increasing demand for modular construction has expanded into multi-storey applications where the effect of lateral loads such as seismic loads becomes critical. However, there is a lack of detailed scientific research that has explored the behaviour of modular buildings and their connection systems against seismic loads. This paper will therefore present the nonlinear time history analysis of a multi-storey modular building against several ground motion records. The critical elements that need special attention in designing a modular building in similar seismic conditions is discussed with a deeper explanation of the behaviour of the overall system.

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Design practice for a prefabricated resort hotel in Hendurabi Island

  • Mahdoudi, Behnam;Sepasgozar, Samad;Hajivandi, Farnaz;Hojjat, Isa
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.271-280
    • /
    • 2017
  • Small islands in humid and hot climates have received less attention development due to lack of resources and difficulties for in-situ construction. This paper addresses this problem by presenting a modular system for sustainable construction of a resort hotel in accordance with the international tourism standards, in addition to, minimizing undesirable effects on nature. This has been achieved by review of literature in the scope of off-site construction and identification of the natural geographical features of Herndurabi Island. According to the information acquired, a feasibility study and design practice have been conducted to achieve a reasonable solution to equip Hendurabi Island as a sample with a self-sufficient prefabricate resort hotel. Findings indicate that the volumetric prefabricated modules would be a solution to devising a framework for design and construction in remote regions.

  • PDF

Assessment of vertical root fracture using cone-beam computed tomography

  • Moudi, Ehsan;Haghanifar, Sina;Madani, Zahrasadat;Alhavaz, Abdolhamid;Bijani, Ali;Bagheri, Mohammad
    • Imaging Science in Dentistry
    • /
    • v.44 no.1
    • /
    • pp.37-41
    • /
    • 2014
  • Purpose: The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. Materials and Methods: This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). Results: The kappa coefficient was $0.875{\pm}0.049$. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. Conclusion: The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants (내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교)

  • Kim, Young-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

Evaluation of Remediation of Contaminated Soil Using PVDs (연직배수재를 이용한 오염도턍복원 특성 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun;Roh, Jeong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1400-1407
    • /
    • 2005
  • There are a number of approaches to in situ remediation that are used at contaminated sites for removing contaminants from the contaminated zone without excavating the soil. These include soil flushing, dual phase extraction, and soil vapor extraction. Of these techniques, soil flushing is the focus of the investigation in this paper. The concept of using prefabricated vertical drains(PVDs) for remediation of contaminated sites with fine-grained soils is examined. The PVD system is used to shorten the drainage path or the groundwater flow and promote subsurface liquid movement expediting the soil flushing process. The use of PVDs in the current state of practice has been limited to soil improvement. The use of PVDs under vacuum conditions is investigated using sample soil consisting of silty sand.

  • PDF

A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths (하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구)

  • Park, Rae-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4322-4327
    • /
    • 2015
  • Improper backfill materials and compaction controls under pipelines have become one of the major causes of failure in many sewage pipeline systems. A study on backfill materials and compaction controls has been considered for a long time. However, structural supporters under the pipe were recently concerned because of pipeline repair and maintenance. This paper presents a prefabricated plastic foundation for supporting a sewage pipe system and increasing the performance function of the pipes. Several analytical models for the plastic foundations were investigated using finite-element program, ABAQUS, for checking safety. Comparing with the results of analyses, some of economic design sections based on the sizes of pipe diameters, 600mm, 700 and 600mm, were evaluated. These results could be applied to a pipeline system with a prefabricated plastic foundation with respect to pipe diameters and buried depths.

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.

Selecting optimized concrete structure by Analytic Hierarchy Process (AHP)

  • Ebrahimi, Morteza;Hedayat, Amir Ahmad;Fakhrabadi, Hamed
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.327-336
    • /
    • 2018
  • Increase in population and its daily increasing in our today society results in an increase in housing demand while traditional methods are not applicable. The project preparation and realization processes, based on theoretical and empirical studies, a creation of goods, services, and technologies, are the most important human activities. Selection of effective technological systems in construction is a complex multi-criteria decision-making task. Many decision-makers refuse innovations once faced with similar difficulties. Therefore, using modern materials and methods in this industry is necessary. Modern methods increase quality and construction speed in addition to decrease energy consumption and costs. One of the problems in the way of any project is selecting construction system compatible with the project needs and characteristics. In the present research, different concrete structures such as common reinforced concrete (RC) structure, prefabricated, Insulating Concrete Formwork (ICF), 3D Panel and Tunnel Concrete Formwork (TCF) for buildings with limited floors in Iran are studied and compared from the viewpoint of different criteria like cost, time, applicability and technical characteristics with industrialization approach. Therefore, some questionnaires filled out by construction industry experts in order to compare criteria and sub-criteria in addition to evaluation of optimized structural systems. Then, results of the questionnaires ranked by Analytic Hierarchy Process (AHP) and the most effective alternative selected. The AHP results show that 3D Panel system 36.5%, ICF 21.7%, TCF 19.03%, prefabricated system 13.3% and common RC system 9.3% are the most and the least efficient systems respectively.