• Title/Summary/Keyword: predictive performance

Search Result 1,335, Processing Time 0.026 seconds

A Study on the Control of Electro-Hydraulic Motors Using Ahead Predictive Adaptive Control Method (예측 적응제어 기법을 이용한 전기 유압 모터의 제어에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1360-1365
    • /
    • 2011
  • Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.

Double-Objective Finite Control Set Model-Free Predictive Control with DSVM for PMSM Drives

  • Zhao, Beishi;Li, Hongmei;Mao, Jingkui
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.168-178
    • /
    • 2019
  • Discrete space vector modulation (DSVM) is an effective method to improve the steady-state performance of the finite control set predictive control for permanent magnet synchronous motor drive systems. However, it requires complex computations due to the presence of numerous virtual voltage vectors. This paper proposes an improved finite control set model-free predictive control using DSVM to reduce the computational burden. First, model-free deadbeat current control is used to generate the reference voltage vector. Then, based on the principle that the voltage vector closest to the reference voltage vector minimizes the cost function, the optimal voltage vector is obtained in an effective way which avoids evaluation of the cost function. Additionally, in order to implement double-objective control, a two-level decisional cost function is designed to sequentially reduce the stator currents tracking error and the inverter switching frequency. The effectiveness of the proposed control is validated based on experimental tests.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes (외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

The Usefulness of Other Comprehensive Income for Predicting Future Earnings

  • LEE, Joonil;LEE, Su Jeong;CHOI, Sera;KIM, Seunghwan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.5
    • /
    • pp.31-40
    • /
    • 2020
  • This study investigates whether other comprehensive income (OCI) reported in the statement of comprehensive income (one of the main financial statements after the adoption of K-IFRS) predicts a firm's future performance. Using the quarterly data of Korean listed companies, we examine the association between OCI estimates and future earnings. First of all, we find that OCI is positively associated with earnings in both 1- and 2-quarter ahead, supporting the predictive value of OCI. When we break down OCI into its individual components, our results suggest that the net unrealized gains/losses on available-for-sale (AFS) investment securities are positively associated with future earnings, while the other components (e.g., net unrealized gains/losses on valuation of cash flow hedge derivatives) present insignificant results. In addition, we investigate whether the reliability in OCI estimates enhances the predictive value of OCI to predict future performance. We find that the predictive ability of OCI, in particular the net unrealized gains/losses on available-for-sale (AFS) investment securities, becomes more pronounced when firms are audited by the Big 4 audit firms. Overall, our study suggests that information content embedded in OCI can provide decision-useful information that is helpful for the prediction of future firm performance.

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

Identification of Combined Biomarker for Predicting Alzheimer's Disease Using Machine Learning

  • Ki-Yeol Kim
    • Korean Journal of Biological Psychiatry
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2023
  • Objectives Alzheimer's disease (AD) is the most common form of dementia in older adults, damaging the brain and resulting in impaired memory, thinking, and behavior. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. The aim of our study was to identify differentially expressed genes associated with AD and combined biomarkers among them to improve AD risk prediction accuracy. Methods Machine learning methods were used to compare the performance of the identified combined biomarkers. In this study, three publicly available gene expression datasets from the hippocampal brain region were used. Results We detected 31 significant common genes from two different microarray datasets using the limma package. Some of them belonged to 11 biological pathways. Combined biomarkers were identified in two microarray datasets and were evaluated in a different dataset. The performance of the predictive models using the combined biomarkers was superior to those of models using a single gene. When two genes were combined, the most predictive gene set in the evaluation dataset was ATR and PRKCB when linear discriminant analysis was applied. Conclusions Combined biomarkers showed good performance in predicting the risk of AD. The constructed predictive nomogram using combined biomarkers could easily be used by clinicians to identify high-risk individuals so that more efficient trials could be designed to reduce the incidence of AD.

Enhancing Tracking Performance of a Bilinear System using MPC (쌍선형 시스템의 추종 성능 강화를 위한 예측 제어 알고리즘)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Lee, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2015
  • This paper presents a method to enhance tracking performance of an input-constrained bilinear system using MPC (Model Predictive Control) when a feasible tracking control is known. Since the error dynamics induced by the known tracking control is asymptotically stable, there exists a Lyapunov function for the stable error dynamics. By defining a cost function including the Lyapunov function and describing tracking performance, an MPC law is derived. In simulation, the performance of the proposed MPC law is demonstrated by applying it to a converter model.

A NEW SYSTEM OF VISUAL PRESENTATION OF ANALYSIS OF TEST PERFORMANCE: THE 'DOUBLE-RING' DIAGRAM

  • Stefadouros Miltiadis A.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02b
    • /
    • pp.142-149
    • /
    • 1994
  • Substitution of graphic representation for extensive lists of numerical statistical data is highly desirable by both editors and readers of medical journals, faced with an exploding abundance of contemporary medical literature. A novel graphic tool. the 'double-ring diagram', is described herein which permits visual representation of information regarding certain statistical variables used to describe the performance of a test or physical sign in the diagnosis of a disease. The diagram is relatively easy to construct on the basis of a number of primary data such as the prevalence and the true positive, true negative. false positive and false negative test results. These values are reflected in the diagram along with the values of other statistical variables derived from them. such as the sensitivity. specificity, predictive values for positive and negative test result. and accuracy. This diagram may be useful in visualizing a test's performance and facilitating visual comparison of performance of two or more tests.

  • PDF

Predictive Control based on Genetic Algorithm for Mobile Robots with Constraints (제한조건을 갖는 이동로봇의 유전알고리즘에 의한 예측제어)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Predictive control is a very practical method that obtain the current input that minimizes the future errors of the reference command and state by use of the predictive model of the controlled object, and can also consider the constraints of the state and input. Although there have been studies in which predictive control is applied to mobile robots, performance has not been optimized as various control parameters for determining control performance have been arbitrarily specified. In this paper, we apply the genetic algorithm to the trajectory tracking control of a mobile robot with input constraints in order to minimize the trajectory tracking errors through control parameter tuning, and apply the quadratic programming Hildreth method to reflect the input constraints. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.