• Title/Summary/Keyword: predictive performance

Search Result 1,334, Processing Time 0.029 seconds

A Fuzzy Predictive Sliding Mode Control for High Performance Induction Motor Position Drives

  • Bayoumi E.H.E.;Nashed M.N.F.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.20-28
    • /
    • 2005
  • This paper presents a fuzzy predictive sliding mode control for high performance induction motor position drives. A new simplified inner-loop sliding-mode current control scheme based on a nonlinear mathematical model of an induction motor is introduced. Novel predictive fuzzy logic PI and PID controllers are used in speed and position loops, respectively. Sliding-mode current controllers and fuzzy predictive logic controllers are designed based on indirect vector control. The overall system performance is examined under different dynamic operating conditions. The performance of the drive system is robust and stable, and insensitive to parameters and operating condition variations even though non-exact system parameters are used in the implementation of the proposed controllers.

The methods to improve the performance of predictive model using machine learning for the quality properties of products (머신러닝을 활용한 제품 특성 예측모델의 성능향상 방법 연구)

  • Kim, Jong Hoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.749-756
    • /
    • 2021
  • Thanks to PLC and IoT Sensor, huge amounts of data has been accumulated onto the companies' databases. Machine Learning Algorithms for the predictive model with good performance have been widely utilized in the manufacturing process. We present how to improve the performance of machine learning predictive models. To improve the performance of the predictive model, typical techniques such as increasing the sample size, optimizing the hyper parameters for the algorithm, and selecting a proper machine learning algorithm for the predictive model would be shown. We suggest some new ways to make the model performance much better. With the proposed methods, we can build a better predictive model for predicting and controlling product qualities and save incredibly large amount of quality failure cost.

MSET PERFORMANCE OPTIMIZATION THROUGH REGULARIZATION

  • HINES J. WESLEY;USYNIN ALEXANDER
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • The Multivariate State Estimation Technique (MSET) is being used in Nuclear Power Plants for sensor and equipment condition monitoring. This paper presents the use of regularization methods for optimizing MSET's predictive performance. The techniques are applied to a simulated data set and a data set obtained from a nuclear power plant currently implementing empirical, on-line, equipment condition monitoring techniques. The results show that regularization greatly enhances the predictive performance. Additionally, the selection of prototype vectors is investigated and a local modeling method is presented that can be applied when computational speed is desired.

Design of Predictive Controller for Effective Superheat Control of Variable Speed Refrigeration System (가변속냉동시스템의 효율적인 과열도제어를 위한 예측제어기 설계)

  • Choi, Jeong-Pil;Hua, Li;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.9-15
    • /
    • 2008
  • In this paper, we suggest PI control with a predictive controller to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. The refrigeration system has long dead time in superheat inherently. The dead time makes the system difficult to achieve the satisfactory quick control response, especially superheat control response. In order to solve this problem, we designed a predictive controller based on PI control to progress superheat control performance. The control performance was investigated through some experiments to verify the effectiveness of the predictive controller.

  • PDF

Microcontroller-Based Improved Predictive Current Controlled VSI for Single-Phase Grid-Connected Systems

  • Atia, Yousry;Salem, Mahmoud
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1016-1023
    • /
    • 2013
  • Predictive current control offers the potential for achieving more precise current control with a minimum of distortion and harmonic noise. However, the predictive method is difficult to implement and has a greater computational burden. This paper introduces a theoretical analysis and experimental verification for an improved predictive current control technique applied to single phase grid connected voltage source inverters (VSI). The proposed technique has simple calculations. An ATmega1280 microcontroller board is used to implement the proposed technique for a simpler and cheaper control system. To enhance the current performance and to obtain a minimum of current THD, an improved tri-level PWM switching strategy is proposed. The proposed switching strategy uses six operation modes instead of four as in the traditional strategy. Simulation results are presented to demonstrate the system performance with the improved switching strategy and its effect on current performance. The presented experimental results verify that the proposed technique can be implemented using fixed point 8-bit microcontroller to obtain excellent results.

High precision Gating Algorithm for Predictive Current Control of Phase Controlled Rectifier (위상제어 정류기의 예측전류제어를 위한 새로운 고정밀 게이팅 알고리즘)

  • 정세종;송승호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • In phase controlled rectifier, it's been known that a fast response is achieved by predictive current control without any overshoot. The frequent sampling period is essential to improve the firing accuracy in conventional predict current control. However, improving the firing accuracy if difficult to reduce the period of sampling efficiently because current sampling and predictive current control is carried out in every period and the ON-OFF current control is performed by comparing two different one. To improve the firing accuracy at the predictive current control, the calculated firing angle is loaded into the high-accuracy hardware timer. So the calculation of exact crossing point between the predictive and actual current is the most important. In this paper, the flow chart for proposed firing angle calculation algorithm is obtained for the fastest current control performance in transient state. The performance of proposed algorithm is verified through simulations and experiments.

A study on the adaptive predictive control of steam-reforming plant using bilinear model (쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF

Statistical Methods for Comparing Predictive Values in Medical Diagnosis

  • Chanrim Park;Seo Young Park;Hwa Jung Kim;Hee Jung Shin
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.656-661
    • /
    • 2024
  • Evaluating the performance of a binary diagnostic test, including artificial intelligence classification algorithms, involves measuring sensitivity, specificity, positive predictive value, and negative predictive value. Particularly when comparing the performance of two diagnostic tests applied on the same set of patients, these metrics are crucial for identifying the more accurate test. However, comparing predictive values presents statistical challenges because their denominators depend on the test outcomes, unlike the comparison of sensitivities and specificities. This paper reviews existing methods for comparing predictive values and proposes using the permutation test. The permutation test is an intuitive, non-parametric method suitable for datasets with small sample sizes. We demonstrate each method using a dataset from MRI and combined modality of mammography and ultrasound in diagnosing breast cancer.

Design of Model Predictive Controllers with Velocity and Acceleration Constraints (속도 및 가속도 제한조건을 갖는 모델예측제어기 설계)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.809-817
    • /
    • 2018
  • The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix $A_r$ by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.

A Model Predictive Controller for The Water Level of Nuclear Steam Generators

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.102-110
    • /
    • 2001
  • In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller at the fixed power level showed good performance for any other power levels by designed changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The steam generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance.

  • PDF