• Title/Summary/Keyword: predictive method

Search Result 1,555, Processing Time 0.031 seconds

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

Application of adaptive controller using receding-horizon predictive control strategy to the electric furnace (이동구간 예측제어 기법을 이용한 적응 제어기의 전기로 적용)

  • Kim, Jin-Hwan;Huh, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Model Based Predictive Control(MBPC) has been widely used in predictive control since 80's. GPC[1] which is the superset of many MBPC strategies a popular method, but GPC has some weakness, such as insufficient stability analysis, non-applicability to internally unstable systems. However, CRHPC[2] proposed in 1991 overcomes the above limitations. So we chose RHPC based on CRHPC for electric furnace control. An electric furnace which has nonlinear properties and large time delay is difficult to control by linear controller because it needs nearly perfect modelling and optimal gain in case of PID. As a result, those controls are very time-consuming. In this paper, we applied RHPC with equality constraint to electric furnace. The reults of experiments also include the case of RHPC with monotonic weighting improving the transient response and including unmodelled dynamics. So, This paper proved the practical aspect of RHPC for real processes.

  • PDF

Output feedback model predictive control for Wiener model with parameter dependent Lyapunov function

  • Yoo, Woo-Jong;Ji, Dae-Hyun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.685-689
    • /
    • 2005
  • In this paper, we consider a robust output feedback model predictive controller(MPC) design for Wiener model. Nonlinearities that couldn't be represented in static nonlinearity block of Wiener model are regarded as uncertainties in linear block. An dynamic output feedback controller design method is presented for Wiener MPC. According to MPC algorithm, the control law is computed based on linear matrix inequality(LMI)at each sampling time by solving convex optimization. Also, a new parameter dependent Lyapunov function is proposed to get a less conservative condition. The results are illustrated with numerical example.

  • PDF

A Predictive Controller Based on the Generalized Minimum Variance Approach (일반화 최소분산법을 기초로 한 예측 제어기)

  • 한홍석;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.557-562
    • /
    • 1988
  • This paper presents a class of discrete adaptive controller that can be applied to a plant without sufficient a priori information. It is well known that the GMV(Generalized Minmum Variance) contrlller performs satisfactorily if the plant time delay is known. By introducing the long-range prediction into the GMV controller, robustness to the time delay can be improved, although optimality is lost. Such an idea motivates a predictive control system to be proposed here, where the system minimizes multi-stage cost via the GMV approach. Moreover, the detuning control weight is determined by an on-line tuning method. It is shown that robustness, computational efficiency, and performance of the resulting control system are improved as compared with those of the GPC(Generalized Predictive Control)system.

  • PDF

Predictive Control of Telerobot with Time Delay

  • Yoon, In-Hyung;Kim, Jung-Kwan;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.5-166
    • /
    • 2001
  • In the teleoperation system, force, position and velocity signals are communicated between master and slave arm. The addition of force feedback for the teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable. Also it is well known that the system can become unstable when a time delay exists in the communication channel. The proposed control strategy is to use predictive control method(MBPC). The predictive controller is used to control teleoperation´s position and force control. Also it is used to overcome time delay.

  • PDF

Development of Predictive Model for Pollutants Emission from Power Plants (발전소의 대기오염물질 배출 예측 모델 개발)

  • 김민석;김경희;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.543-550
    • /
    • 1998
  • From the power plant in a steel plant, environment pollutants such as $SO_x$, $NO_x$, CO and $CO_2$ are emitted by combustion reactions of the fuels which are by-product gases, oil and liquefied natural gas(LNG). To reduce the amounts of the pollutants, it is important to build a predictive model for the emission of the pollutants. In this paper, model that predict the amounts of generated pollutants for the used fuel is developed by using Gibbs free energy minimization method[1] with the temperature correction technique. For some data set, the calculation results from this model are compared with the real emission amounts of $SO_x$, $NO_x$, and the result of the calculation by both ASPEN PLUS which is a commercial simulation software. This model shows good results and can be applied to other power plants.

  • PDF

Recognition of Noise Quantity by Neural Network using Linear Predictive Coefficient (선형예측계수를 사용한 신경회로망에 의한 잡음량의 인식)

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • In order to reduce the noise quantity in a conversation under the noisy environment, it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. There fore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. In the experiment, the average values of the recognition results were 97.6% or more for various noises using Aurora2 database.

  • PDF

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.