• Title/Summary/Keyword: predictive method

Search Result 1,555, Processing Time 0.031 seconds

AutoML and Artificial Neural Network Modeling of Process Dynamics of LNG Regasification Using Seawater (해수 이용 LNG 재기화 공정의 딥러닝과 AutoML을 이용한 동적모델링)

  • Shin, Yongbeom;Yoo, Sangwoo;Kwak, Dongho;Lee, Nagyeong;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • First principle-based modeling studies have been performed to improve the heat exchange efficiency of ORV and optimize operation, but the heat transfer coefficient of ORV is an irregular system according to time and location, and it undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based modeling were performed to confirm the effectiveness of data-based modeling for complex systems. The prediction accuracy indicated high performance in the order of LSTM > AutoML > FNN in MSE. The performance of AutoML, an automatic design method for machine learning models, was superior to developed FNN, and the total time required for model development was 1/15 compared to LSTM, showing the possibility of using AutoML. The prediction of NG and seawater discharged temperatures using LSTM and AutoML showed an error of less than 0.5K. Using the predictive model, real-time optimization of the amount of LNG vaporized that can be processed using ORV in winter is performed, confirming that up to 23.5% of LNG can be additionally processed, and an ORV optimal operation guideline based on the developed dynamic prediction model was presented.

A Node2Vec-Based Gene Expression Image Representation Method for Effectively Predicting Cancer Prognosis (암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법)

  • Choi, Jonghwan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.397-402
    • /
    • 2019
  • Accurately predicting cancer prognosis to provide appropriate treatment strategies for patients is one of the critical challenges in bioinformatics. Many researches have suggested machine learning models to predict patients' outcomes based on their gene expression data. Gene expression data is high-dimensional numerical data containing about 17,000 genes, so traditional researches used feature selection or dimensionality reduction approaches to elevate the performance of prognostic prediction models. These approaches, however, have an issue of making it difficult for the predictive models to grasp any biological interaction between the selected genes because feature selection and model training stages are performed independently. In this paper, we propose a novel two-dimensional image formatting approach for gene expression data to achieve feature selection and prognostic prediction effectively. Node2Vec is exploited to integrate biological interaction network and gene expression data and a convolutional neural network learns the integrated two-dimensional gene expression image data and predicts cancer prognosis. We evaluated our proposed model through double cross-validation and confirmed superior prognostic prediction accuracy to traditional machine learning models based on raw gene expression data. As our proposed approach is able to improve prediction models without loss of information caused by feature selection steps, we expect this will contribute to development of personalized medicine.

A Study on the Development of a Fire Site Risk Prediction Model based on Initial Information using Big Data Analysis (빅데이터 분석을 활용한 초기 정보 기반 화재현장 위험도 예측 모델 개발 연구)

  • Kim, Do Hyoung;Jo, Byung wan
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.245-253
    • /
    • 2021
  • Purpose: This study develops a risk prediction model that predicts the risk of a fire site by using initial information such as building information and reporter acquisition information, and supports effective mobilization of fire fighting resources and the establishment of damage minimization strategies for appropriate responses in the early stages of a disaster. Method: In order to identify the variables related to the fire damage scale on the fire statistics data, a correlation analysis between variables was performed using a machine learning algorithm to examine predictability, and a learning data set was constructed through preprocessing such as data standardization and discretization. Using this, we tested a plurality of machine learning algorithms, which are evaluated as having high prediction accuracy, and developed a risk prediction model applying the algorithm with the highest accuracy. Result: As a result of the machine learning algorithm performance test, the accuracy of the random forest algorithm was the highest, and it was confirmed that the accuracy of the intermediate value was relatively high for the risk class. Conclusion: The accuracy of the prediction model was limited due to the bias of the damage scale data in the fire statistics, and data refinement by matching data and supplementing the missing values was necessary to improve the predictive model performance.

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Determination of Survival of Gastric Cancer Patients With Distant Lymph Node Metastasis Using Prealbumin Level and Prothrombin Time: Contour Plots Based on Random Survival Forest Algorithm on High-Dimensionality Clinical and Laboratory Datasets

  • Zhang, Cheng;Xie, Minmin;Zhang, Yi;Zhang, Xiaopeng;Feng, Chong;Wu, Zhijun;Feng, Ying;Yang, Yahui;Xu, Hui;Ma, Tai
    • Journal of Gastric Cancer
    • /
    • v.22 no.2
    • /
    • pp.120-134
    • /
    • 2022
  • Purpose: This study aimed to identify prognostic factors for patients with distant lymph node-involved gastric cancer (GC) using a machine learning algorithm, a method that offers considerable advantages and new prospects for high-dimensional biomedical data exploration. Materials and Methods: This study employed 79 features of clinical pathology, laboratory tests, and therapeutic details from 289 GC patients whose distant lymphadenopathy was presented as the first episode of recurrence or metastasis. Outcomes were measured as any-cause death events and survival months after distant lymph node metastasis. A prediction model was built based on possible outcome predictors using a random survival forest algorithm and confirmed by 5×5 nested cross-validation. The effects of single variables were interpreted using partial dependence plots. A contour plot was used to visually represent survival prediction based on 2 predictive features. Results: The median survival time of patients with GC with distant nodal metastasis was 9.2 months. The optimal model incorporated the prealbumin level and the prothrombin time (PT), and yielded a prediction error of 0.353. The inclusion of other variables resulted in poorer model performance. Patients with higher serum prealbumin levels or shorter PTs had a significantly better prognosis. The predicted one-year survival rate was stratified and illustrated as a contour plot based on the combined effect the prealbumin level and the PT. Conclusions: Machine learning is useful for identifying the important determinants of cancer survival using high-dimensional datasets. The prealbumin level and the PT on distant lymph node metastasis are the 2 most crucial factors in predicting the subsequent survival time of advanced GC.

Characteristics of Signal-to-Noise Paradox and Limits of Potential Predictive Skill in the KMA's Climate Prediction System (GloSea) through Ensemble Expansion (기상청 기후예측시스템(GloSea)의 앙상블 확대를 통해 살펴본 신호대잡음의 역설적 특징(Signal-to-Noise Paradox)과 예측 스킬의 한계)

  • Yu-Kyung Hyun;Yeon-Hee Park;Johan Lee;Hee-Sook Ji;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.55-67
    • /
    • 2024
  • This paper aims to provide a detailed introduction to the concept of the Ratio of Predictable Component (RPC) and the Signal-to-Noise Paradox. Then, we derive insights from them by exploring the paradoxical features by conducting a seasonal and regional analysis through ensemble expansion in KMA's climate prediction system (GloSea). We also provide an explanation of the ensemble generation method, with a specific focus on stochastic physics. Through this study, we can provide the predictability limits of our forecasting system, and find way to enhance it. On a global scale, RPC reaches a value of 1 when the ensemble is expanded to a maximum of 56 members, underlining the significance of ensemble expansion in the climate prediction system. The feature indicating RPC paradoxically exceeding 1 becomes particularly evident in the winter North Atlantic and the summer North Pacific. In the Siberian Continent, predictability is notably low, persisting even as the ensemble size increases. This region, characterized by a low RPC, is considered challenging for making reliable predictions, highlighting the need for further improvement in the model and initialization processes related to land processes. In contrast, the tropical ocean demonstrates robust predictability while maintaining an RPC of 1. Through this study, we have brought to attention the limitations of potential predictability within the climate prediction system, emphasizing the necessity of leveraging predictable signals with high RPC values. We also underscore the importance of continuous efforts aimed at improving models and initializations to overcome these limitations.

Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model (기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측)

  • Nguyen Thi Phuong Thanh;Gyu Sung Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Container volume is a very important factor in accurate evaluation of port performance, and accurate prediction of effective port development and operation strategies is essential. However, it is difficult to improve the accuracy of container volume prediction due to rapid changes in the marine industry. To solve this problem, it is necessary to analyze the impact on port performance using the Internet of Things (IoT) and apply it to improve the competitiveness and efficiency of Busan Port. Therefore, this study aims to develop a prediction model for predicting the future container volume of Busan Port, and through this, focuses on improving port productivity and making improved decision-making by port management agencies. In order to predict port container volume, this study introduced the Extreme Gradient Boosting (XGBoost) technique of a machine learning model. XGBoost stands out of its higher accuracy, faster learning and prediction than other algorithms, preventing overfitting, along with providing Feature Importance. Especially, XGBoost can be used directly for regression predictive modelling, which helps improve the accuracy of the volume prediction model presented in previous studies. Through this, this study can accurately and reliably predict container volume by the proposed method with a 4.3% MAPE (Mean absolute percentage error) value, highlighting its high forecasting accuracy. It is believed that the accuracy of Busan container volume can be increased through the methodology presented in this study.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.