• 제목/요약/키워드: prediction rate

검색결과 3,099건 처리시간 0.032초

Artificial neural network algorithm comparison for exchange rate prediction

  • Shin, Noo Ri;Yun, Dai Yeol;Hwang, Chi-gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.125-130
    • /
    • 2020
  • At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.

Prediction of small-scale leak flow rate in LOCA situations using bidirectional GRU

  • Hye Seon Jo;Sang Hyun Lee;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3594-3601
    • /
    • 2024
  • It is difficult to detect a small-scale leakage in a nuclear power plant (NPP) quickly and take appropriate action. Delaying these procedures can have adverse effects on NPPs. In this paper, we propose leak flow rate prediction using the bidirectional gated recurrent unit (Bi-GRU) method to detect leakage quickly and accurately in small-scale leakage situations because large-scale leak rates are known to be predicted accurately. The data were acquired by simulating small loss-of-coolant accidents (LOCA) or small-scale leakage situations using the modular accident analysis program (MAAP) code. In addition, to improve prediction performance, data were collected by distinguishing the break sizes in more detail. In addition, the prediction accuracy was improved by performing both LOCA diagnosis and leak flow rate prediction in small LOCA situations. The prediction model developed using the Bi-GRU showed a superior prediction performance compared with other artificial intelligence methods. Accordingly, the accurate and effective prediction model for small-scale leakage situations proposed herein is expected to support operators in decision-making and taking actions.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Victim BTB를 활용한 히트율 개선과 효율적인 통합 분기 예측 (Improving Hit Ratio and Hybrid Branch Prediction Performance with Victim BTB)

  • 주영상;조경산
    • 한국정보처리학회논문지
    • /
    • 제5권10호
    • /
    • pp.2676-2685
    • /
    • 1998
  • 본 논문에서는 파이프라인 프로세서의 분기 명령어 처리 성능 향상을 목적으로, BTB의 미스율을 줄이고 분기 예측의 정확도를 개선하기 위해 victim cache를 활용한 2-단계 BTB 구조를 제안한다. 2-단계 BTB는 기존의 BTB에 작은 크기의 victim BTB를 추가한 구조로, 적은 비용으로 BTB 미스율을 개선하고, 동적 예측(dynamic prediction)과 정적 예측 (static prediction)이 함께 사용되는 기존의 통합 분기 예측(Hybrid Branch Prediction) 구조의 예측 정확도를 높이도록 운영된다. 본 논문에서 제안된 2-단계 BTB에 의한 성능 개선을 4개 벤치마크 프로그램에 대한 trace-driven 시뮬레이션을 통해 검증한 결과, 기존의 BTB에 비해 2.5∼8.5%의 비용 증가로 BTB 미스율이 26.5% 개선되고, 기존의 gshare에 비해 64%의 비용 증가로 예측 정확도는 26.75% 개선되었다.

  • PDF

신경망을 이용한 만성질병에 영향을 미치는 식이요인 분석연구 (Analysis of Dietary Factors of Chronic Disease Using a Neural Network)

  • 이심열;백희영;유송민
    • 대한지역사회영양학회지
    • /
    • 제4권3호
    • /
    • pp.421-430
    • /
    • 1999
  • A neural network system was applied in order to analyze the nutritional and other factors influencing chronic diseases. Five different nutrition evaluation methods including SD Score, %RDA, NAR INQ and %RDA-SD Score were utilized to facilitate nutrient data for the system. Observing top three chronic disease prediction ratio, WHR using SD Score was the most frequently quoted factor revealing the highest predication rate as 62.0%. Other high prediction rates using other data processing methods are as follows. Prediction rate with %RDA, NAR, INQ and %RDA-SD Score were 58.5%(diabetes), 53.5%(hyperlipidemia), 51.6%(diabetes), and 58.0%(diabetes)respectively. Higher prediction rate was observed using either NAR or INQ for obesity as 51.7% and 50.9% compared to the previous result using SD Score. After reviewing appearance rate for all chronic disease and for various data processing method used, it was found that iron and vitamin C were the most frequently cited factors resulting in high prediction rate.

  • PDF

Fast Prediction Mode Decision in HEVC Using a Pseudo Rate-Distortion Based on Separated Encoding Structure

  • Seok, Jinwuk;Kim, Younhee;Ki, Myungseok;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.807-817
    • /
    • 2016
  • A novel fast algorithm is suggested for a coding unit (CU) mode decision using pseudo rate-distortion based on a separated encoding structure in High Efficiency Video Coding (HEVC). A conventional HEVC encoder requires a large computational time for a CU mode prediction because prediction and transformation procedures are applied to obtain a rate-distortion cost. Hence, for the practical application of HEVC encoding, it is necessary to significantly reduce the computational time of CU mode prediction. As described in this paper, under the proposed separated encoder structure, it is possible to decide the CU prediction mode without a full processing of the prediction and transformation to obtain a rate-distortion cost based on a suitable condition. Furthermore, to construct a suitable condition to improve the encoding speed, we employ a pseudo rate-distortion estimation based on a Hadamard transformation and a simple quantization. The experimental results show that the proposed method achieves a 38.68% reduction in the total encoding time with a similar coding performance to that of the HEVC reference model.

시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교 (Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis)

  • 남성휘
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

항공기 동적 부분품에 대한 신뢰성 평가 (A Study on Reliability Assessment of Aircraft Structural Parts)

  • 김은정;원준호;최주호;김태곤
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.38-43
    • /
    • 2010
  • A continuing challenge in the aviation industry is how to safely keep aircraft in service longer with limited maintenance budgets. Therefore, all the advanced countries in aircraft technologies put great efforts in prediction of failure rate in parts and system, but in the domestic aircraft industry is lack of theoretical and experimental research. Prediction of failure rate provides a rational basis for design decisions such as the choice of part quality levels and derating factors to be applied. For these reasons, analytic prediction of failure rate is essential process in developing aircraft structure. In this paper, a procedure for prediction of failure rate for aircraft structural parts is presented. Cargo door kinematic parts are taken to illustrate the process, in which the failure rate for Hook part is computed by using Monte Carlo Simulation along with Response Surface Model, and system failure rate is obtained afterwards.

Prediction Intervals for Proportional Hazard Rate Models Based on Progressively Type II Censored Samples

  • Asgharzadeh, A.;Valiollahi, R.
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.99-106
    • /
    • 2010
  • In this paper, we present two methods for obtaining prediction intervals for the times to failure of units censored in multiple stages in a progressively censored sample from proportional hazard rate models. A numerical example and a Monte Carlo simulation study are presented to illustrate the prediction methods.

공작기계 핵심 Units의 신뢰성 예측 및 Design Review (Reliability Prediction & Design Review for Core Units of Machine Tools)

  • 이승우;송준엽;이현용;박화영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.133-136
    • /
    • 2003
  • In these days, the reliability analysis and prediction are applied for many industrial products and many products require guaranteeing the quality and efficiency of their products. In this study reliability prediction for core units of machine tools has been performed in order to improve and analyze its reliability. ATC(Automatic Tool Changer) and interface Card of PC-NC that are core component of the machine tools were chosen as the target of the reliability prediction. A reliability analysis tool was used to obtain the reliability data(failure rate database) for reliability prediction. It is expected that the results of reliability prediction be applied to improve and evaluate its reliability. Failure rate, MTBF (Mean Time Between Failure) and reliability for core units of machine tools were evaluated and analyzed in this study.

  • PDF