DOI QR코드

DOI QR Code

Prediction Intervals for Proportional Hazard Rate Models Based on Progressively Type II Censored Samples

  • Asgharzadeh, A. (Department of Statistics, University of Mazandaran) ;
  • Valiollahi, R. (Department of Statistics, Semnan University)
  • Published : 2010.01.31

Abstract

In this paper, we present two methods for obtaining prediction intervals for the times to failure of units censored in multiple stages in a progressively censored sample from proportional hazard rate models. A numerical example and a Monte Carlo simulation study are presented to illustrate the prediction methods.

Keywords

References

  1. Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009a). Prediction of k-records from a general class of distributions under balanced type loss functions, Metrika, 70, 19-33. https://doi.org/10.1007/s00184-008-0176-5
  2. Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009b). Bayesian estimation based on k-record data from a general class of distributions under balanced type loss functions, Journal of Statistical Planning and Inference, 139, 1180-1189. https://doi.org/10.1016/j.jspi.2008.07.008
  3. Awad, A. M. and Raqab, M. Z. (2000). Prediction intervals for the future record values from exponential distribution: Comparative study, Journal of Statistical Computation and Simulation, 65, 325-340. https://doi.org/10.1080/00949650008812005
  4. Balakrishnan, N. (2007). Progressive censoring methodology: An appraisal, Test, 16, 211-259. https://doi.org/10.1007/s11749-007-0061-y
  5. Balakrishnan, N. and Lin, C. T. (2002). Exact linear inference and prediction for exponential distributions based on general progressively Type-II censored samples, Journal of Statistical Computation and Simulation, 72, 677-686. https://doi.org/10.1080/00949650213746
  6. Basak, I., Basak, P. and Balakrishnan, N. (2006). On some predictors of times to failure of censored items in progressively censored samples, Computational Statistics & Data Analysis, 50, 1313-1337. https://doi.org/10.1016/j.csda.2005.01.011
  7. Marshall, A. W. and Olkin, I. (2007). Life Distributions, Springer, New York.
  8. Nelson, W. (1982). Applied Life Data Analysis, John Wiley & Sons, New York.
  9. Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2004). Optimal progressive censoring plans for the Weibull distribution, Technometrics, 46, 470-481. https://doi.org/10.1198/004017004000000482
  10. Raqab, M. Z. and Nagaraja, H. N. (1995). On some predictors of future order statistics, Metron, 53, 185-204.
  11. Viveros, R. and Balakrishnan, N. (1994). Interval estimation of life characteristics from progressively censored data, Technometrics, 36, 84-91. https://doi.org/10.2307/1269201

Cited by

  1. Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution vol.21, pp.1, 2014, https://doi.org/10.5351/CSAM.2014.21.1.093
  2. Bayesian Prediction for Progressive Censored Data From the Weibull-Geometric Model vol.36, pp.3, 2017, https://doi.org/10.1080/01966324.2017.1334603
  3. Prediction of Future Failures Times based on Type-I Hybrid Censored Samples of Random Sample Sizes 2017, https://doi.org/10.1080/03610918.2017.1375519