• 제목/요약/키워드: prediction model of compressive strength

검색결과 253건 처리시간 0.022초

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Application of AI models for predicting properties of mortars incorporating waste powders under Freeze-Thaw condition

  • Cihan, Mehmet T.;Arala, Ibrahim F.
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.187-199
    • /
    • 2022
  • The usability of waste materials as raw materials is necessary for sustainable production. This study investigates the effects of different powder materials used to replace cement (0%, 5% and 10%) and standard sand (0%, 20% and 30%) (basalt, limestone, and dolomite) on the compressive strength (fc), flexural strength (fr), and ultrasonic pulse velocity (UPV) of mortars exposed to freeze-thaw cycles (56, 86, 126, 186 and 226 cycles). Furthermore, the usability of artificial intelligence models is compared, and the prediction accuracy of the outputs is examined according to the inputs (powder type, replacement ratio, and the number of cycles). The results show that the variability of the outputs was significantly high under the freeze-thaw effect in mortars produced with waste powder instead of those produced with cement and with standard sand. The highest prediction accuracy for all outputs was obtained using the adaptive-network-based fuzzy inference system model. The significantly high prediction accuracy was obtained for the UPV, fc, and fr of mortars produced using waste powders instead of standard sand (R2 of UPV, fc and ff is 0.931, 0.759 and 0.825 respectively), when under the freeze-thaw effect. However, for the mortars produced using waste powders instead of cement, the prediction accuracy of UPV was significantly high (R2=0.889) but the prediction accuracy of fc and fr was low (R2fc=0.612 and R2ff=0.334).

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.123-130
    • /
    • 2022
  • 본 논문은 건설현장의 콘크리트 붕괴사고를 사전에 예방하기 위한 조치 중 하나로 감수율에 따른 콘크리트강도 저하에 영향을 미치는 일일 시간대별 변화와 온도의 변화를 시계열데이터로 축적된 기상청 자료를 기반으로 분석했다. 감수율 발생 구간의 예측을 확인할 신뢰성 있는 모델로 규칙적이고 명확한 시계열데이터 모델에 적합한 SARIMA모델을 통하여 p_value는 0.5 이하, coef는 일방향으로 나타나는 등 검증 항목들이 신뢰성 확보에 유의미한 결과를 얻었다. 이러한 신뢰를 바탕으로 확보한 데이터를 이용하여 시간대별 온도변화와 구간별 감수율을 분석한 결과 7~8월, 12~13시, 29~31℃ 구간이 가장 큰 감수율을 나타냄을 알 수 있다. 연구 결과를 이용하여 연구 결과 구간의 요인이 발생하면 배치플랜트에서 물-시멘트 배합설계 시 감수율을 반영한 레미콘을 생산하여 감수율에 따른 콘크리트 압축강도 저하를 예방할 수 있을 것으로 기대된다.

철근콘크리트 내부 온습도 경시변화 추정 모델 구축 (Prediction Model for the Change of Temperature and R.H. inside Reinforced Concrete)

  • 박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2016
  • Surplus water inside a concrete other than moisture that is used for hydration of the cement affects the physical properties of the concrete (modulus of elasticity, compressive strength, drying shrinkage, and creep) by drying. Changes in temperature and humidity inside a concrete has correlation with the movement speed and reaction rate of deterioration factors such as carbon dioxide and chloride ions. In this study, comparison was performed between temperature and relative humidity inside the concrete and meteorological data for exposure environment through measurement at the site for two years. Surface temperature of the concrete (depth 1cm) was measured higher by 6℃ during the summers, while it was measured lower by 2℃ during the winters due to solar radiation, wind, and radiation cooling. As for relative humidity, change was large in the depth of 1cm, while more than 85% was maintained in the depth of 10cm.

  • PDF

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.219-228
    • /
    • 2022
  • The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.

다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구 (Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

불포화 공극 보정 수화도 모델을 이용한 콘크리트의 자기수축 예측 (Prediction of Autogenous Shrinkage on Concrete by Unsaturated Pore Compensation Hydration Model)

  • 이창수;박종혁
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.909-915
    • /
    • 2006
  • 콘크리트의 자기수축을 예측하기 위해 기존 수화도와 자기수축의 진행 속도 차이를 불포화공극 생성 속도로 가정하고 시멘트 페이스트의 자기수축 실험을 통하여 물-결합재비에 반비례하는 불포화공극 보정계수를 산정할 수 있었다. 이를 자기수축 기여 성분과 미기여 성분이 고려된 변형 Pickket 모델을 이용하여 콘크리트의 자기수축을 예측하였으며, 실험값 및 기존 Tazawa 모델과 일치하는 경향을 나타내어 불포화공극 보정계수에 의한 자기수축 예측이 타당함을 알 수 있었다. 그러나 강도의 함수로 설정된 기존 CEB-FIP 자기수축 예측 모델의 경우 최종 자기수축률과 자기수축 발현 시간함수에 대하여 다소의 수정이 필요할 것으로 판단된다.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.