• 제목/요약/키워드: prediction intelligence

검색결과 835건 처리시간 0.027초

Proposal of An Artificial Intelligence Farm Income Prediction Algorithm based on Time Series Analysis

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.98-103
    • /
    • 2021
  • Recently, as the need for food resources has increased both domestically and internationally, support for the agricultural sector for stable food supply and demand is expanding in Korea. However, according to recent media articles, the biggest problem in rural communities is the unstable profit structure. In addition, in order to confirm the profit structure, profit forecast data must be clearly prepared, but there is a lack of auxiliary data for farmers or future returnees to predict farm income. Therefore, in this paper we analyzed data over the past 15 years through time series analysis and proposes an artificial intelligence farm income prediction algorithm that can predict farm household income in the future. If the proposed algorithm is used, it is expected that it can be used as auxiliary data to predict farm profits.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

Practical method to improve usage efficiency of bike-sharing systems

  • Lee, Chun-Hee;Lee, Jeong-Woo;Jung, YungJoon
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.244-259
    • /
    • 2022
  • Bicycle- or bike-sharing systems (BSSs) have received increasing attention as a secondary transportation mode due to their advantages, for example, accessibility, prevention of air pollution, and health promotion. However, in BSSs, due to bias in bike demands, the bike rebalancing problem should be solved. Various methods have been proposed to solve this problem; however, it is difficult to apply such methods to small cities because bike demand is sparse, and there are many practical issues to solve. Thus, we propose a demand prediction model using multiple classifiers, time grouping, categorization, weather analysis, and station correlation information. In addition, we analyze real-world relocation data by relocation managers and propose a relocation algorithm based on the analytical results to solve the bike rebalancing problem. The proposed system is compared experimentally with the results obtained by the real relocation managers.

Review of Internet of Things-Based Artificial Intelligence Analysis Method through Real-Time Indoor Air Quality and Health Effect Monitoring: Focusing on Indoor Air Pollution That Are Harmful to the Respiratory Organ

  • Eunmi Mun;Jaehyuk Cho
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권1호
    • /
    • pp.23-32
    • /
    • 2023
  • Everyone is aware that air and environmental pollutants are harmful to health. Among them, indoor air quality directly affects physical health, such as respiratory rather than outdoor air. However, studies that have examined the correlation between environmental and health information have been conducted with public data targeting large cohorts, and studies with real-time data analysis are insufficient. Therefore, this research explores the research with an indoor air quality monitoring (AQM) system based on developing environmental detection sensors and the internet of things to collect, monitor, and analyze environmental and health data from various data sources in real-time. It explores the usage of wearable devices for health monitoring systems. In addition, the availability of big data and artificial intelligence analysis and prediction has increased, investigating algorithmic studies for accurate prediction of hazardous environments and health impacts. Regarding health effects, techniques to prevent respiratory and related diseases were reviewed.

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • 스마트미디어저널
    • /
    • 제11권2호
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

스포츠 현장에서 인공지능 활용 방안 (Utilization of Artificial Intelligence in the Sports Field)

  • Yang, Jeong Ok;Lee, Jook Sook
    • 한국운동역학회지
    • /
    • 제32권3호
    • /
    • pp.69-79
    • /
    • 2022
  • Objective: The purpose of this study is to analyze trends related to sports and artificial intelligence (AI) to understand the trends and how they change according to time, and to establish methods to apply AI in sports. Both macro and micro perspectives related to sports utilization of AI were analyzed. Method: In this study, after analyzing and discussing various information related to the use of artificial intelligence in the sports through a search of academic journals, papers, books, and websites published recently at nationally and internationally, the application plan of artificial intelligence in the sports field was presented. Results: 1) Motion analysis technology using artificial intelligence is effective in sports where posture is important, and if it provides systematic feedback and training methods, it can help improve performance. 2) The introduction of a sports referee judgment system using artificial intelligence is expected to improve performance by restoring factual judgment and objective fairness in sports games. 3) Artificial intelligence will provide coaching staff and players with a variety of information to help improve performance through systematic coaching and improving feedback and enhanced training methods. 4) It is judged that artificial intelligence-related to sports ethics, sports ICT, sports marketing, sports prediction, etc. We think that based on the current AI research trends will have a positive impact on all sports-related areas, helping to revitalize sports. Conclusion: Motion analysis technology using artificial intelligence, sports referee judgment system, coaching using artificial intelligence, and artificial intelligence are judged to have a positive effect on all sports-related areas and help revitalize sports.

A Knowledge Integration Model for Corporate Dividend Prediction

  • Kim, Jin-Hwa;Won, Chae-Hwan;Bae, Jae-Kwon
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.129-134
    • /
    • 2008
  • Dividend is one of essential factors determining the value of a firm. According to the valuation theory in finance, discounted cash flow (DCF) is the most popular and widely used method for the valuation of any asset. Since dividends play a key role in the pricing of a firm value by DCF, it is natural that the accurate prediction of future dividends should be most important work in the valuation. Although the dividend forecasting is of importance in the real world for the purpose of investment and financing decision, it is not easy for us to find good theoretical models which can predict future dividends accurately except Marsh and Merton (1987) model. Thus, if we can develop a better method than Marsh and Merton in the prediction of future dividends, it can contribute significantly to the enhancement of a firm value. Therefore, the most important goal of this study is to develop a better method than Marsh and Merton model by applying artificial intelligence techniques.

  • PDF

Development of Prediction Model for Diabetes Using Machine Learning

  • Kim, Duck-Jin;Quan, Zhixuan
    • 한국인공지능학회지
    • /
    • 제6권1호
    • /
    • pp.16-20
    • /
    • 2018
  • The development of modern information technology has increased the amount of big data about patients' information and diseases. In this study, we developed a prediction model of diabetes using the health examination data provided by the public data portal in 2016. In addition, we graphically visualized diabetes incidence by sex, age, residence area, and income level. As a result, the incidence of diabetes was different in each residence area and income level, and the probability of accurately predicting male and female was about 65%. In addition, it can be confirmed that the influence of X on male and Y on female is highly to affect diabetes. This predictive model can be used to predict the high-risk patients and low-risk patients of diabetes and to alarm the serious patients, thereby dramatically improving the re-admission rate. Ultimately it will be possible to contribute to improve public health and reduce chronic disease management cost by continuous target selection and management.

Smart support system for diagnosing severe accidents in nuclear power plants

  • Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun;Hur, Seop;Kim, Hyeonmin
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.562-569
    • /
    • 2018
  • Recently, human errors have very rarely occurred during power generation at nuclear power plants. For this reason, many countries are conducting research on smart support systems of nuclear power plants. Smart support systems can help with operator decisions in severe accident occurrences. In this study, a smart support system was developed by integrating accident prediction functions from previous research and enhancing their prediction capability. Through this system, operators can predict accident scenarios, accident locations, and accident information in advance. In addition, it is possible to decide on the integrity of instruments and predict the life of instruments. The data were obtained using Modular Accident Analysis Program code to simulate severe accident scenarios for the Optimized Power Reactor 1000. The prediction of the accident scenario, accident location, and accident information was conducted using artificial intelligence methods.