• Title/Summary/Keyword: prediction estimator

Search Result 87, Processing Time 0.022 seconds

Performance Evaluation of SG Tube Defect Size Estimation System in the Absence of Defect Type Classification (결함 형태 분류 과정이 필요없는 SG 세관 결함 크기 추정 시스템의 성능 평가)

  • Jo, Nam-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • In this paper, we study a new estimation system for the prediction of steam generator tube defects. In the previous research works, defect size estimators were independently designed for each defect types in order to estimate the defect size. As a result, the structure of estimation system is rather complex and the estimation performance gets worse if the classification performance is degraded for some reason. This paper studies a new estimation system that does not require the classification of defect types. Although the previous works are expected to achieve much better estimation performance than the proposed system since it uses the estimator specialized in each defect, the performance difference is not so large. Therefore, it is expected that the proposed estimator can be effectively used for the case where the defect type classification is imperfect.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Applications of Gaussian Process Regression to Groundwater Quality Data (가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석)

  • Koo, Min-Ho;Park, Eungyu;Jeong, Jina;Lee, Heonmin;Kim, Hyo Geon;Kwon, Mijin;Kim, Yongsung;Nam, Sungwoo;Ko, Jun Young;Choi, Jung Hoon;Kim, Deog-Geun;Jo, Si-Beom
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2016
  • Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.

Signal Enhancement of a Variable Rate Vocoder with a Hybrid domain SNR Estimator

  • Park, Hyung Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.962-977
    • /
    • 2019
  • The human voice is a convenient method of information transfer between different objects such as between men, men and machine, between machines. The development of information and communication technology, the voice has been able to transfer farther than before. The way to communicate, it is to convert the voice to another form, transmit it, and then reconvert it back to sound. In such a communication process, a vocoder is a method of converting and re-converting a voice and sound. The CELP (Code-Excited Linear Prediction) type vocoder, one of the voice codecs, is adapted as a standard codec since it provides high quality sound even though its transmission speed is relatively low. The EVRC (Enhanced Variable Rate CODEC) and QCELP (Qualcomm Code-Excited Linear Prediction), variable bit rate vocoders, are used for mobile phones in 3G environment. For the real-time implementation of a vocoder, the reduction of sound quality is a typical problem. To improve the sound quality, that is important to know the size and shape of noise. In the existing sound quality improvement method, the voice activated is detected or used, or statistical methods are used by the large mount of data. However, there is a disadvantage in that no noise can be detected, when there is a continuous signal or when a change in noise is large.This paper focused on finding a better way to decrease the reduction of sound quality in lower bit transmission environments. Based on simulation results, this study proposed a preprocessor application that estimates the SNR (Signal to Noise Ratio) using the spectral SNR estimation method. The SNR estimation method adopted the IMBE (Improved Multi-Band Excitation) instead of using the SNR, which is a continuous speech signal. Finally, this application improves the quality of the vocoder by enhancing sound quality adaptively.

Intelligent System for the Prediction of Heart Diseases Using Machine Learning Algorithms with Anew Mixed Feature Creation (MFC) technique

  • Rawia Elarabi;Abdelrahman Elsharif Karrar;Murtada El-mukashfi El-taher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정: 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.227-249
    • /
    • 2003
  • Prediction of corporate failure using past financial data is a well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as model construction process. Irrespective of the efficiency of a teaming procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network model. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables fur neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

Probability Sampling to Select Polling Places in Exit Poll (출구조사를 위한 투표소 확률추출 방법)

  • Kim, Young-Won;Uhm, Yoon-Hee
    • Survey Research
    • /
    • v.6 no.2
    • /
    • pp.1-32
    • /
    • 2005
  • The accuracy of exit poll mainly depends on the sampling method of voting places. For exit poll, we propose a probability sampling method of selecting voting places as an alternative to the bellwether polling place sampling. Through an empirical study based on the 2004 general election data, the efficiency of the suggested systematic sampling from ordered voting places was evaluated in terms of mean prediction error and it turns out that the proposed sampling method outperformed the bellwether polling places sampling. We also calculated the variance of estimator from the proposed sampling, and considered the sample size problem to guarantee the target precision using the design effect of the proposed sample design.

  • PDF

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.

Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator (칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법)

  • Park, Sang-Bum;Han, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.601-607
    • /
    • 2006
  • This paper proposes a novel balance control scheme of a biped robot to predict the next position of ZMP using Kalman Filter. The mathematical model of the biped robot is generally approximated by 3D-LIPM(3D-Linear Inverted Pendulum Mode), but it cannot completely express the robot's dynamics. The stability of the biped robot depends on whether the ZMP(Zero Moment Point) position is in the stability region or out of. And the internal error between the robot mechanism and its model could affect the stability of a robot. Therefore, the proposed balance control not reduces the internal error, but also timely generates the proper control. The experiment of the proposed balance control is simulated on the virtual workspace where the biped robot may encounter with various difficulties.

A New Hardware Architecture of High-Speed Motion Estimator for H.264 Video CODEC (H.264 비디오 코덱을 위한 고속 움직임 예측기의 하드웨어 구조)

  • Lim, Jeong-Hun;Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.293-304
    • /
    • 2011
  • In this paper, we proposed a new hardware architecture for motion estimation (ME) which is the most time-consuming unit among H.264 algorithms and designed to the type of intellectual property (IP). The proposed ME hardware consists of buffer, processing unit (PU) array, SAD (sum of absolute difference) selector, and motion vector (MVgenerator). PU array is composed of 16 PUs and each PU consists of 16 processing elements (PUs). The main characteristics of the proposed hardware are that current and reference frames are re-used to reduce the number of access to the external memory and that there is no clock loss during SAD operation. The implemented ME hardware occupies 3% hardware resources of StatixIII EP3SE80F1152C2 which is a FPGA of Altera Inc. and can operate at up to 446.43MHz. Therefore it can process up to 50 frames of 1080p in a second.