References
- Kim, G.B., Choi, D.H., Yoon, P.S., and Kim, K.Y., 2010, Trends of groundwater quality in the areas with a high possibility of pollution, J. Korean Geo-Environ. Soc., 11(3), 5-16.
- Ministry of Environment (Korea), National Institute of Environmental Research (Korea), 2007-2013, National Groundwater Quality Monitoring Network Annual Report.
- Bazi, Y., Alajlan, N., and Melgani, F., 2012, Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression, IEEE Trans. Geosci. Remote Sensing, 50(7), 2733-2743. https://doi.org/10.1109/TGRS.2011.2174246
- Chapman, D., 1996, Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring, UNESCO/WHO/UNEP, 22 p.
- Grbi, R., Kurtagi, D., and Sli kovi, D., 2013, Stream water temperature prediction based on Gaussian process regression, Expert Sys. Applic., 40(18), 7407-7414. https://doi.org/10.1016/j.eswa.2013.06.077
- Helsel, D.R. and Hirsch, R.M., 1988, Applicability of the t-Test for Detecting Trends in Water Quality Variables, J. American Water Resour. Assoc., 24(1), 201-204. https://doi.org/10.1111/j.1752-1688.1988.tb00896.x
- Helsel, D.R. and Hirsch, R.M., 2002, Statistical methods in water resources: US Geological Survey Techniques of Water Resources Investigations, book 4, chap. A3, U.S. Geological Survey.
- Hirsch, R.M., Slack, J.R., and Smith, R.A., 1982, Techniques of trend analysis for monthly water-quality data, Water Resour. Res., 18, 107-121. https://doi.org/10.1029/WR018i001p00107
- Hirsch, R.M., Alexander, R.B., and Smith, R.A., 1991, Selection of methods for the detection and estimation of trends in water quality, Water Resour. Res., 27(5), 803-813. https://doi.org/10.1029/91WR00259
- Jarque, Carlos M., Bera, Anil K., 1987, A test for normality of observations and regression residuals, Int. Stat. Rev., 55(2), 163-172. https://doi.org/10.2307/1403192
- Murphy, K.P., 2012, Machine Learning: a Probabilistic Perspective, The MIT Press, Cambridge, 1067 p.
- Sun, A.Y., Wang, D., and Xu, X., 2014, Monthly streamflow forecasting using Gaussian Process Regression, J. Hydro., 511, 72-81. https://doi.org/10.1016/j.jhydrol.2014.01.023