• Title/Summary/Keyword: predicted environmental concentrations

Search Result 148, Processing Time 0.022 seconds

The Effect of Dust Emissions on PM10 Concentration in East Asia (황사 배출량이 동아시아 지역 PM10 농도에 미치는 영향)

  • Choi, Dae-Ryun;Koo, Youn-Seo;Jo, Jin-Sik;Jang, Young-Kee;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • The anthropogenic aerosols originated from the pollutant emissions in the eastern part of China and dust emitted in northwestern China in Yellow sand regions are subsequently transported via eastward wind to the Korean peninsula and then these aerosols induce high $PM_{10}$ concentrations in Korean peninsula. In order to estimate air quality considering anthropogenic and dust emissions, Comprehensive Air-quality Model with extension (CAMx) was applied to simulate $PM_{10}$ concentration. The predicted $PM_{10}$ concentrations without/with dust emissions were compared with observations at ambient air quality monitoring sites in China and Korea for 2008. The predicted $PM_{10}$ concentrations with dust emissions could depict the variation of measured $PM_{10}$ especially during Yellow sand events in Korea. The comparisons also showed that predicted $PM_{10}$ concentrations without dust emissions were under-predicted while predictions of $PM_{10}$ concentrations with dust emission were in good agreement with observations. This implied that dust emissions from desert and barren soil in southern Mongolia and northern China minimized the discrepancies in the $PM_{10}$ predictions in East Asia. The effect of dust emission on annual $PM_{10}$ concentrations in Korea Peninsula for year 2008 was $5{\sim}10{\mu}g/m^3$, which were about 20% of observed annual $PM_{10}$ concentrations.

Predicting Environmental Concentrations of Selected Pharmaceuticals Using the PhATETM Model in Keum-River, Korea (PhATETM 모형을 적용한 금강수계 중 의약물질 농도 추정)

  • Lim, Deuck-Soon;Park, Jeong-Im
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In recent years, pharmaceuticals in the aquatic environment have become a matter of increasing public concern. Environmental risk assessment (ERA), including an exposure assessment, is considered the best scientifically based approach for evaluating the potential effects of pharmaceuticals on ecosystems. Computerized exposure models constitute an important tool in predicting environmental exposures of pharmaceuticals. This paper presents the applicability of an exposure model by comparing measured data of selected pharmaceuticals with predicted environmental concentrations from an exposure model. $PhATE^{TM}$ (Pharmaceutical Assessment and Transport Evaluation) model developed by the Pharmaceutical Research and Manufacturers of America (PhRMA) was adapted to run simulations for the Keum River. A set of 7 pharmaceuticals of high production in Korea was modeled. The PECs generated by the $PhATE^{TM}$ model that were then compared to the measured concentrations. The $PhATE^{TM}$ model predicted concentrations for 7 pharmaceuticals including acetaminophen, acetylsalicylic acid, erythromycin, ibuprofen, lincomycin, mefenamic acid, and naproxen were in good agreement with actual measured concentrations, which demonstrated the utility of $PhATE^{TM}$ as a predictive tool. In conclusion, $PhATE^{TM}$, although it does not intend to accurately represent reality, could be utilized for rapid predictions of the environmental concentrations of pharmaceuticals.

A Study on the Prediction of SO2 Concentrations by the Regional Segment ISCST3 Modeling in the Seoul Metropolitan Area (지역 분할 방법에 의한 ISCST3 모델링으로 수도권 지역에서 SO2 농도 예측 연구)

  • Koo, Youn-Seo;Kim, Sung-Tae;Shin, Bong-Sup;Shin, Dong-Yoon;Lee, Jeong-Joo
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.245-257
    • /
    • 2003
  • $SO_2$ concentrations in the Seoul Metropolitan Area (SMA) were predicted by the regional segment ISCST3 modeling. The SMA was segmented by three modeling regions where the weather monitoring station exists since the area of the SMA, approximately $100km{\times}100km$, is too wide to be modeled by one modeling domain. The predicted concentrations by the model were compared with the measured concentrations at 39 air monitoring stations located in the SMA to validate the ISCST3 modeling coupled with the regional segment approach. The predicted concentrations by the regional segment method showed better performance in depicting the measurements than those by the non-segment ISCST3 modeling. The correction methods of the calculated concentrations reviewed were here the correlation method by the first order linear equation and the ratio method of observed to calculated concentrations. The corrected concentrations by two methods showed good agreement with the measured data. The ratio method was, however, easily applicable to the concentration correction in case of a wide modeling region considered in this study.

Comparison of Complex Terrain Dispersion Models (복잡지형의 대기확산모델 비교)

  • 김영성;오현선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.81-94
    • /
    • 1998
  • Six complex terrain dispersion models recommended by the U. S. Environmental Protection Agency were investigated using a hypothetical case in which a plume approaches complex terrain. The six models considered were Valley, CTSCREEN, COMPLEX 1, SHORTZ, RTDM, and CTDMPLUS, the latter four being closely studied. Highest concentrations were predicted for 48 receptors and plume behaviors were compared for stable and unstable meteorological conditions. Under stable conditions, ground-level concentrations were determined by the height of the plume centerline above the terrain. The concentrations estimated by SHORTZ and COMPLEX I were higher than those estimated by CTSCREEN, with CTDMPLUS predicting the lowest concentrations. In particular, the height of the lift midpoint, as well as the co.nterline of the plume, are important in the model calculation of CTDMPLUS. Under unstable conditions, the vertical dispersion plays a key role in determining ground -level concentrations. For this case, concentrations predicted by CTDMPLUS were the 'highest, whereas those predicted by SHORTZ were the lowest. Concentration distributions predicted by CTDMPLUS are quite similar to typical Gaussian distributions even on complex terrain, except for a slight shift of the plume centerline due to the of(tract of the geostrophic wind. In addition,24-hour average concentrations were estimated for comparison with results from the Valley model. Among the four models studied closely, CTDMPLUS predicted the lowest 24-hour average concentrations, but the concentrations estimated by Valley were lower than those estimated by CTDMPLUS.

  • PDF

Simulating the Pesticide PECs Using the Integrated RICEWQ-RIVWQ Model (RICEWQ-RIVWQ 연계모형을 이용한 농약 PECs 모의)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.502-508
    • /
    • 2005
  • In order to assess the environmental risk of pesticides, information is usually required on the likelihood of exposure of organisms to the constituents of pesticides, expressed as a predicted environmental concentrations (PECs) and the likely effects of the constituents of pesticides on aquatic and terrestrial organisms, expressed as a predicted no-effect concentrations (PNECs). In this paper, the pesticide fate model, RICEWQ alone and coupled with the pesticide movement model, RIVWQ was used to simulate the potential for predicting the environmental concentrations of pesticides in paddy fields and adjacent surface water systems. The RICEWQ model was successfully calibrated against field data in poinding depth for paddy field. For the assessment of importance for water and pesticide management conditions and field scales, the integrated RICEWQ-RIVWQ model was simulated by the scenario analysis. The results of this study can be used as a basic information for assessing the environmental risk of pesticides.

  • PDF

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

Model Performance Evaluation and Bias Correction Effect Analysis for Forecasting PM2.5 Concentrations (PM2.5 예보를 위한 모델 성능평가와 편차보정 효과 분석)

  • Ghim, Young Sung;Choi, Yongjoo;Kim, Soontae;Bae, Chang Han;Park, Jinsoo;Shin, Hye Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • The performance of a modeling system consisting of WRF model v3.3 and CMAQ model v4.7.1 for forecasting $PM_{2.5}$ concentrations were evaluated during the period May 2012 through December 2014. Twenty-four hour averages of $PM_{2.5}$ and its major components obtained through filter sampling at the Bulgwang intensive measurement station were used for comparison. The mean predicted $PM_{2.5}$ concentration over the entire period was 68% of the mean measured value. Predicted concentrations for major components were underestimated except for $NO_3{^-}$. The model performance for $PM_{2.5}$ generally tended to degrade with increasing the concentration level. However, the mean fractional bias (MFB) for high concentration above the $80^{th}$ percentile fell within the criteria, the level of accuracy acceptable for standard model applications. Among three bias correction methods, the ratio adjustment was generally most effective in improving the performance. Albeit for limited test conditions, this analysis demonstrated that the effects of bias correction were larger when using the data with a larger bias of predicted values from measurement values.

An Evaluation of the Influence of Boundary Conditions from GEOS-Chem on CMAQ Simulations over East Asia (동아시아지역에서 GEOS-Chem에 의한 경계조건이 CMAQ 모사 결과에 미치는 영향에 대한 평가)

  • Choi, Dae-Ryun;Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.186-198
    • /
    • 2013
  • The present work is an attempt to improve the performance of a regional air quality model by means of liking it with a global chemistry transport model. The global chemical transport model of GEOS-Chem is used to provide BC (Boundary Condition)s which reflect temporal and spatial variations at boundaries of regional chemical transport model of CMAQ over East Asia. First, GEOS-Chem outputs are evaluated by comparing predicted concentrations with observed monthly data of gas phase species and secondary inorganic aerosols from EANET (Acid Deposition Monitoring Network in East Asia) sites. The results show that predicted PM10 concentrations are in good agreement with the observations. This implies that GEOS-Chem outputs could be used to provide BCs to CMAQ. Simulated daily and monthly mean PM10 concentrations of CMAQ with the linkage of GEOS-Chem's BCs and constant BCs are then evaluated by comparing predicted concentrations with observations at API (Air Pollution Index) sites in China as well as EANET sites in Korea. CMAQ with the GEOS-Chem outputs improves model simulation in depicting observed PM10 concentrations comparing with those with constant BCs. It is also found that influence of aerosol species are largely dependent on the BCs over East Asia and Korea. Mean biases between simulated versus observed daily and monthly mean concentrations of PM10 with the GEOS-chem were improved by 1~8 ${\mu}g/m^3$ in China region, 3.26 ${\mu}g/m^3$ in Korea.

A Comparative Study of Predicted Environmental Concentrations from ECETOC TRA Based on Environmental Release Categories/Specific Environmental Release Categories and K-CHESAR Using Main/Industrial/Use Categories (환경배출범주/특수환경배출범주 기반 ECETOC TRA 및 주요/산업/용도 분류체계 이용의 K-CHESAR에 의한 환경예측농도 비교 연구)

  • Hyun Pyo Jeon;Jisu Yang;Hana Jo;Eun Kyung Choe;Sanghun Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.312-323
    • /
    • 2023
  • Background: Environmental concentrations of substances can be estimated by K-CHESAR based on main, industrial, and use categories (MC/IC/UC) and ECETOC TRA based on environmental or specific environmental categories (ERC or spERC). Objectives: Three different systems for estimating environmental concentrations were compared to figure out their order with possible reasons along with relationship of regional predicted environmental concentrations (PECregional) and final PEClocal for various uses of a substance. Methods: Typical uses of the case substance and their corresponding ERCs were selected from the webpage of the European Chemical Agency. Proper MC/IC/UC and spERC were assigned to each ERC. Emission fractions were compared for each assessment code from the available database. PECs were calculated by three estimating systems: K-CHESAR using MC/IC/UC, ECETOC TRA using ERC, and ECETOC TRA using spERC with their default values for input parameters. Percentage of PECregional to PEClocal were manually calculated for each use. Results: Emission factors decreased in the order of ERC > MC/IC/UC > spERC. Values of the final PEClocal derived as sum of PECregional and Clocal decreased in the order of calculations using ECETOC TRA-ERC>KCHESAR with MC/IC/UC>ECETOC TRA-spERC for all environmental media. Percentages of PECregional,water to PEClocal,water ranged from 0 to 10.3% in industrial uses calculated with MC/IC/UC and ERC but 96.3 to 100% in wide dispersive uses of ERC and spERC where values of Clocal,water are estimated to be very low. Conclusions: ECETOC TRA generated the most refined PNEC values with spERC and the least with ERC, while K-CHESAR with MC/IC/UC generated values between the two results. The ratio of PECregional to PEClocal can be a good measure for performing suitable estimation of PNECs according to use.

Development of a Theoretical Model for Predicting Contaminant Concentrations in a Multi-zone Work Environment (다구획 작업환경에서의 오염농도 예측을 위한 이론적 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • To predict contaminant concentrations within a multi-zone work environment, an air quality model in the work environment was developed. To do this, airflow equations on the basis of orifice equation were solved by using the Conte and De Boor scheme, and then equations for the conservation of mass on contaminant were solved by using the fourth-order Runge-Kutta algorithm. To validate the accuracy of simulated results, this model was applied to the controlled environment chamber that had been tested in 1998 by Chung KC. The comparison of predicted concentrations by this study with measured concentrations by the Chung KC indicated that the average deviations were 2.66, 3.35, and 3.15% for zone 1, zone 2, and zone 3, respectively. Also, this model was applied to a working plant with four zones. Thus, the results of contaminant concentration versus time were predicted according to the schedule of the openings operation, and case studies were done for four cases of the openings operation to investigate the interaction of airflow and contaminant concentration. The results indicated that opening operation schedules had a significant effect on contaminant removal efficiency. Therefore, this model might be able to apply for the design of ventilation schedules to control contaminants optimally.