• Title/Summary/Keyword: precursors

Search Result 1,449, Processing Time 0.033 seconds

Synthesis and Characterization of Trimetallic Rare Earth Orthoferrites, $La_xSm_{1-x}FeO_3$

  • Traversa, Enrico;Gusmano, Gualtiero;Allieri, Brigida;Depero, Laura E.;Sangaletti, Luigi;Aono, Hiromichi;Sadaoka, Yoshihiko
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Nanosized powders of trimetallic orthoferrites containing La and Sm in different ratios were synthesised by the thermal decomposition at low temperatures of the corresponding hexacyanocomplexes. The precursors and their decomposition products were analyzed by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), x-ray diffraction (XRD) and Raman spectroscopy. Single phase trimetallic precursors and oxides were obtained. The crystal structure of the perovskitic oxides was orthorhombic, and the lattice parameters were affected by the ionic size of the rare earth elements present in the oxides. Raman spectroscopy showed a disorder effect in the vibrational bands with increasing the La content.

  • PDF

Microwave Synthesis of Titanium Silicalite-1 Using Solid Phase Precursors

  • Kim, K.Y.;Ahn, W.S.;Park, D.W.;Oh, J.H.;Lee, C.M.;Tai, W.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.634-638
    • /
    • 2004
  • Titanium silicalite-1 (TS-1) molecular sieve was produced by microwave heating of amorphous titanium-containing solid precursors after impregnation with aqueous TPAOH solution. $SiO_2-TiO_2$ xerogel, sub-micron sized $SiO_2-TiO_2$ prepared by thermal plasma process, and Ti-containing mesoporous silica, Ti-HMS, were tested as the solid phase substrates. Highly crystalline product was obtained within 30 min. after microwave irradiation with yields over 90% using $SiO_2-TiO_2$ xerogel, which showed essentially identical physicochemical properties to TS-1 prepared by conventional hydrothermal method. Excellent catalytic activity was also obtained for 1-hexene epoxidation using $H_2O_2.\;SiO_2-TiO_2$ particles prepared by thermal plasma and Ti-HMS were found inferior as a substrate for TS-1, probably due to difficulties in wetting the surface uniformly with TPAOH.

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

Ultrastructural Changes of Germ Cell during the Gametogenesis in Korean Rockfish, Sebastes schlegeli

  • CHUNG Ee-Yung;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.736-752
    • /
    • 1995
  • Fine structural changes of germ cell during the gametogenesis of Korean rockfish, Sebastes schlegeli sampled in west coast of Korea were investigated from September 1993 to August 1994. In a layer of microvilli of oocyte with active yolk duplication, many pinocytotic vesicles containing protein granules regarded as yolk precursors were observed. The multivesicular bodies were formed by gathered mitochondria. They are participated in formation of the primary yolk globules homogeneously filled with high dense particles and enclosed within a limiting membrane. The precursors of yolk globule appeared to be formed by modification of mitochondria and they developed into the primary yolk globules with participation of large and dense pinocytotic vesicles. Yolk globules in mature oocyte were consisted of three components: the crystalline type main body, the superficial layer with dense and fine granules, and the limiting membrane. Steroid hormone secreting cells were recognized in the interstitial cells of growing testis. Numerous endoplasmic reticula and large mitochondria with well developed tubular cristae appeared in their cytoplasms. The axoneme in the tail flagellum of spermatozoon consisted of nine pairs of microtubules at the periphery and one pair at the center, and they were covered with doublet microtubules.

  • PDF

High Level Expression of a Protein Precursor for Functional Studies

  • Gathmann, Sven;Rupprecht, Eva;Schneider, Dirk
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.717-721
    • /
    • 2006
  • In vitro analyses of type I signal peptidase activities require protein precursors as substrates. Usually, these pre-proteins are expressed in vitro and cleavage of the signal sequence is followed by SDS polyacrylamide gel electrophoresis coupled with autoradiography. Radioactive amino acids have to be incorporated in the expressed protein, since the amount of the in vitro expressed protein is usually very low and processing of the signal peptide cannot be followed by SDS polyacrylamide gel electrophoresis alone. Here we describe a rapid and simple method to express large amounts of a protein precursor in E. coli. We have analyzed the effect of ionophors as well as of azide on the accumulation of expressed protein precursors. Azide blocks the function of SecA and the ionophors dissipate the electrochemical gradient across the cytoplasmic membrane of E. coli. Addition of azide ions resulted in the formation of inclusion bodies, highly enriched with pre-apo-plastocyanine. Plastocyanine is a soluble copper protein, which can be found in the periplasmic space of cyanobacteria as well as in the thylakoid lumen of cyanobacteria and chloroplasts, and the pre-protein contains a cleavable signal sequence at its N-terminus. After purification of cyanobacterial pre-apo-plastocyanine, its signal sequence can be cleaved off by the E. coli signal peptidase, and protein processing was followed on Coomassie stained SDS polyacrylamide gels. We are optimistic that the presented method can be further developed and applied.

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Crystallization of Coprecipitates Prepared from Lead Nitrate and Titanium Tetrachloride (질산납과 사염화티탄으로부터 제조된 공침물의 결정화)

  • Choe, Byeong-Cheol;Lee, Mun-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.541-549
    • /
    • 1994
  • The crystallization behavior and structural change of amorphous $PbTiO_{3}$ precursors prepared by coprecipitation method were investigated by XRD, Raman spectra, TEM, and RDF. The precursors were prepared at $45^{\circ}C$ and pH of 9 from a mixed solution of lead nitrate and titanium tetrachloride derived using $H_2O_2$ or $NH_4NO_3$ as an ion stabilizer. The activation energy and temperature for crystallization of the coprecipitate prepared using $NH_4NO_3$ as an ion stabilizer were lower than that derived from the solution containing $H_2O_2$ stabilizer. The amorphous coprecipitate transformed to transient phase and then to crystalline $PbTiO_{3}$. Average interatomic distances of amorphous states decreased with increasing heat-treatment temperature.

  • PDF

Effect of Mechanical Alloying Atmosphere on Formation of AlN (AlN의 형성에 미치는 기계적 합금화 분위기의 영향)

  • Yu Seung-Hoon;Lee Young Sung;Shin Kwang-Seon
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.214-219
    • /
    • 2005
  • In order to investigate the formation of AlN, mechanical alloying was carried out in $N_2$ and $NH_3$ atmosphere. Differential thermal analysis (DTA), x-ray diffraction (XRD) and chemical analysis were carried out to examine the formation behavior of aluminum nitrides. No diffraction pattern of AlN was observed in XRD analysis of the as-milled powders in $NH_3\;or\;N_2$ atmosphere. However, DTA and chemical analysis indicated that the precursors for AlN were formed in the Al powders milled in $NH_3$ atmosphere. The AlN precursors transformed to AlN after heat treatment at and above $600^{\circ}C$. It was considered that the reaction between Al and $NH_3$ was possible by the formation of fresh Al surface during mechanical alloying of Al powders.

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.