• Title/Summary/Keyword: precursor method.

Search Result 921, Processing Time 0.025 seconds

Preparation of Photocatalysts by Hydrothermal Precipitation Method and Their Photocatalytic Performance of Brilliant Blue FCF (수열합성법에 의한 광촉매 제조 및 Brilliant Blue FCF 분해 성능)

  • Kim, Seok-Hyeon;Jeong, Sang-Gu;Na, Seok-En;Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.152-156
    • /
    • 2016
  • Experimental research on the preparation of photocatalyst for the decomposition of brilliant blue FCF ($C_{37}H_{31}O_9N_2S_3Na_2$) was performed. $TiO_2$ and ZnO powders were prepared from titanium (IV) sulfate and zinc acetate at low reaction temperature and atmospheric pressure by hydrothermal precipitation method without calcination. In addition, $TiO_2$ was prepared with cationic surfactant CTAB (Hexadecyltrimethyl ammonium bromide) at the same conditions. The physical properties of prepared $TiO_2$ and ZnO, such as crystallinity, average particle size and absorbance, were investigated by XRD, Zeta-potential meter and DRS. And, the photocatalytic degradation of brilliant blue FCF has been studied in the batch reactor under UV radiation. For the photocatalysts prepared without CTAB, $TiO_2$ has smaller particle size and larger absorbance and photocatalytic reaction rate than ZnO. And $TiO_2$, prepared with CTAB whose concentration is 1/10 of that of precursor, shows 15% higher than that prepared without CTAB in final photocatalytic degradation ratio of brilliant blue FCF.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method (정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상)

  • Lim, Chaehun;Kim, Kyung Hoon;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2021
  • A thermally conductive 200 ㎛ thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the ID/IG ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts (백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해)

  • Jo, Hyeonmin;You, Dalsan;Kim, Munjeong;Woo, Jaegyu;Jung, Kyeong Youl;Jo, Young Min;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.

Synthesis of Pitch from PFO, Byproduct of Naphtha Cracking Process Using UV Irradiation and AlCl3 Catalyst (나프타 분해공정 부산물인 PFO로부터 UV 조사와 AlCl3 촉매 첨가를 이용한 피치의 합성)

  • Jung, Min-Jung;Ko, Yoonyoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.224-228
    • /
    • 2015
  • The carbon precursor pitch from pyrolyzed fuel oil (PFO), by-product of Naphta cracking process (NCC), was prepared through heat and UV irradiation treatments with various concentrations of $AlCl_3$, which is a new pitch preparation method. The reformed pitches were characterized by measuring their elemental composition, chemical structure of components, molecular weight distribution, and softening point. The oxygen contents of reformed pitch increased as increasing $AlCl_3$ amounts on the other hand, the carbon and hydrogen contents were not nearly changed. UV irradiated reformed pitches were composed of more aromatic carbon compounds than that of using only heat-treatment without any UV irradiation. The addition of $AlCl_3$ catalyst was ineffective on the aromaticity of reformed pitches. The softening point of prepared pitches was in the range of $103.3{\sim}168.9^{\circ}C$. Also the yield of prepared pitch increased from 48% to 80% when 5 wt% of $AlCl_3$ was added during the heat and UV irradiation reforming. It is expected that the UV irradiation reforming method can be practical and helpful to produce high yields of pitches with diverse properties.

A Study on Photoluminance Properties of $(Y,Gd)BO_3:Eu^{3+}$ Phosphor Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무법으로 제조한 $(Y,Gd)BO_3:Eu^{3+}$ 형광체의 발광특성에 관한 연구)

  • Kim, Dae-Su;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.204-211
    • /
    • 2000
  • The $(Y,Gd)BO_3:Eu$ red phosphors for PDP application were synthesized by ultrasonic spray method and then their photoluminance properties were investigated under 147nm VUV irradiation. The precursor solution of acetates of Y, GD and Eu and boric acid diluted in water was sprayed using 1.7 MHz ultra-sonic sprayer into the reaction tube held at high temperature. The as-sprayed particles were amorphous phase having C-C and C-H bonds due to the insufficient thermal reaction during the pass along the tube. But the sprayed samples followed by heat treatment at $1100^{\circ}C$ had the same crystal structure and chemical composition as those samples followed by solid state reaction. It was found that the $(Y_{0.7}Gd_{0.3})_{0.95} BO_3:Eu_{0.05}^{3+}$ phosphor particles synthesized by spray at $500^{\circ}C$ and then heat treated at $900^{\circ}C$ had a spherical-like shape and fine particle size at $0.7{\mu\textrm{m}}$ having a narrow size distribution, while the phosphor particles made by solid state reaction was $3{\mu\textrm{m}}$ coarse and non-uniform size distribution. The emitting intensity under 147nm VUV excitation for $(Y_{0.7}Gd_{0.3})_{0.95}BO_3:Eu_{0.05}^{3+}$ phosphor prepared by spray method was found to be higher than those phosphor made by solid state reaction and the commercial $(Y,Gd)BO_3:Eu$ product.

  • PDF

Deposition and Characterization of Antistiction Layer for Nanoimprint Lithography by VSAM (Vapor Self Assembly Monolayer) (기상 자기조립박막 법을 이용한 나노임프린트용 점착방지막 형성 및 특성평가)

  • Cha, Nam-Goo;Kim, Kyu-Chae;Park, Jin-Goo;Jung, Jun-Ho;Lee, Eung-Sug;Yoon, Neung-Goo
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • Nanoimprint lithography (NIL) is a new lithographic method that offers a sub-10nm feature size, high throughput, and low cost. One of the most serious problems of NIL is the stiction between mold and resist. The antistiction layer coating is very effective to prevent this stiction and ensure the successful NIL results. In this paper, an antistiction layer was deposited by VSAM (vapor self assembly monolayer) method on silicon samples with FOTS (perfluoroctyltrichlorosilane) as a precursor for making an antistiction layer. A specially designed LPCVD (low pressure chemical vapor deposition) was used for this experiment. All experiments were achieved after removing the humidity. First, the evaporation test of FOTS was performed for checking the evaporation temperature at low pressure. FOTS was evaporated at 5 Tow and $110^{\circ}C$. In order to evaluate the temperature effect on antistiction layer, chamber temperature was changed from 50 to $170^{\circ}C$ with 0.1ml of FOTS for 1 minute. Good hydrophobicity of all samples was shown at about $110^{\circ}$ of contact angle and under $20^{\circ}$ of hysteresis. The surface energies of all samples calculated by Lewis acid/base theory was shown to be about 15mN/m. The deposited thicknesses of all samples measured by ellipsometry were almost 1nm that was similar value of the calculated molecular length. The surface roughness of all samples was not changed after deposition but the friction force showed relatively high values and deviations deposited at under $110^{\circ}$. Also the white circles were founded in LFM images under $110^{\circ}$. High friction forces were guessed based on this irregular deposition. The optimized VSAM process for FOTS was achieved at $170^{\circ}C$, 5 Torr for 1 hour. The hot embossing process with 4 inch Si mold was successfully achieved after VSAM deposition.