DOI QR코드

DOI QR Code

Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method

정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상

  • Lim, Chaehun (Department of Applied Chemistry Engineering, Chungnam National University) ;
  • Kim, Kyung Hoon (Department of Applied Chemistry Engineering, Chungnam National University) ;
  • An, Donghae (Department of Applied Chemistry Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry Engineering, Chungnam National University)
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 김경훈 (충남대학교 응용화학공학과) ;
  • 안동해 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2020.12.31
  • Accepted : 2021.02.05
  • Published : 2021.04.10

Abstract

A thermally conductive 200 ㎛ thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the ID/IG ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.

본 연구에서는 폴리이미드(polyimide; PI) 막(film)의 열전도도를 향상시켜 그 응용성을 확대하고자, 정전기 방전법을 이용하여 흑연봉으로부터 그래핀을 제조하고 제조된 그래핀을 첨가하여 폴리아믹산(polyamic acid; PAA) 전구체로부터 200 ㎛두께의 폴리이미드 기반 열전도 막을 제조하였다. 정전기 방전 기법으로 생산된 그래핀은 라만, XPS, TEM 등을 이용하여 물성을 평가하였다. 제조된 그래핀은 라만 스펙트럼 분석 결과 ID/IG 값이 0.138이며, XPS 분석 결과 C/O 비율이 24.91로 구조적, 표면화학적으로 우수한 물성을 나타내었다. 또한, 흑연 박리 그래핀의 첨가량에 따라 폴리이미드 막의 열전도도는 지수함수적으로 증가하였으며, 그래핀 함량을 40% 초과 시에는 폴리이미드 막을 제조할 수 없었다. 그래핀을 폴리아믹산 중량 대비40 wt% 첨가하여 제조된 폴리이미드 막의 열원반(hot disk) 열전도도는 51 W/mK를 나타내었으며, 순수한 폴리이미드 막의 열전도도(1.9 W/mK)보다 크게 향상되었다. 이 결과는 정전기 방전기법으로 제조된 박리 그래핀의 우수한 물성에 기인한 것으로 판단된다.

Keywords

References

  1. S. Chen, Q. Wang, M. Zhang, R. Huang, Y. Huang, J. Tang, and J. Liu, Scalable production of thick graphene film for next generation thermal management application, Carbon, 167, 270-277 (2020). https://doi.org/10.1016/j.carbon.2020.06.030
  2. P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim, and C. M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon, 94, 494-500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
  3. C. Chevigny, F. Dalmas, E. Di Cola, D. Gigmes, D. Bertin, F. Boue and J. Jestin, Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior, Macromolecules, 44, 122-133 (2011). https://doi.org/10.1021/ma101332s
  4. Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, and Z. Guo, Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites, J. Mater. Chem. C, 7, 7035-7044 (2019). https://doi.org/10.1039/C9TC01804B
  5. Q. Jiang, X. Wang, Y. Zhu, D. Hui, and Y. Qiu, Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites, Compos. B Eng., 56, 408-412 (2014). https://doi.org/10.1016/j.compositesb.2013.08.064
  6. F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li, F. Zhao, Z. Zhang, F. Lv, and W. Feng, Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite, Adv. Funct. Mater., 29, 1901383 (2019). https://doi.org/10.1002/adfm.201901383
  7. H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan, H. Qiu, and J. Yang, Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy, Carbon, 126, 319-327 (2018). https://doi.org/10.1016/j.carbon.2017.10.044
  8. Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, and Z. Guo, Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology, J. Mater. Chem. C, 6, 3004-3015, (2018). https://doi.org/10.1039/C8TC00452H
  9. D. G. Papageorgiou, I. A. Kinloch, and R. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci., 90, 75-127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
  10. I. A. Ovid'Ko, Mechanical properties of graphene, Rev. Adv. Mater. Sci., 34, 1-11 (2013).
  11. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys, 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  12. A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569-581 (2011). https://doi.org/10.1038/nmat3064
  13. K. M. Shahil, and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials, Solid State Commun., 152, 1331-1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
  14. J. Chen, B. Yao, C. Li, and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, 225-229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
  15. S. N. Alam, N. Sharma, and L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 6, 1-18 (2017). https://doi.org/10.4236/graphene.2017.61001
  16. I. H. Tseng, J. C. Chang, S. L. Huang, and M. H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide, Polym. Int., 62, 827-835 (2013). https://doi.org/10.1002/pi.4375
  17. S. Wei, Q. Yu, Z. Fan, S. Liu, Z. Chi, X. Chen, Y. Zhang, and J. Xu, Fabricating high thermal conductivity rGO/polyimide nanocomposite films via a freeze-drying approach, RSC Adv., 8, 22169-22176 (2018). https://doi.org/10.1039/C8RA00827B
  18. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano, 5, 2332-2339 (2011). https://doi.org/10.1021/nn200025p
  19. Y. J. Kwon, Y. Kwon, H. S. Park, and J. U. Lee, Mass-produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system, Adv. Mater. Int., 6, 1900095 (2019). https://doi.org/10.1002/admi.201900095
  20. S. Lim, J. H. Han, H. W. Kang, J. U. Lee, and W. Lee, Preparation of electrochemically exfoliated graphene sheets using DC switching voltages, Carbon Lett., 30, 409-416 (2020). https://doi.org/10.1007/s42823-019-00110-3
  21. D. Van Thanh, L.-J. Li, C.-W. Chu, P.-J. Yen, and K.-H. Wei, Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets, RSC Adv., 4, 6946-6949 (2014). https://doi.org/10.1039/c3ra46807k
  22. A. S. Kotkin, V. K. Kochergin, E. N. Kabachkov, Y. M. Shulga, A. S. Lobach, R. A. Manzhos, and A. G. Krivenko, One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides, Mater. Today Energy, 17, 100459 (2020). https://doi.org/10.1016/j.mtener.2020.100459
  23. D. Van Thanh, H.-C. Chen, L.-J. Li, C.-W. Chu, and K.-H. Wei, Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite, RSC Adv., 3, 17402-17410 (2013). https://doi.org/10.1039/c3ra43084g
  24. F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53, 1126-1130 (1970). https://doi.org/10.1063/1.1674108
  25. S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. R. Soc. A, 362, 2271-2288 (2004). https://doi.org/10.1098/rsta.2004.1454
  26. V. Sreeja, G. Vinitha, R. Reshmi, E. Anila, and M. K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Opt. Mater., 66, 460-468 (2017). https://doi.org/10.1016/j.optmat.2017.01.042
  27. C. Vacacela Gomez, T. Tene, M. Guevara, G. Tubon Usca, D. Colcha, H. Brito, R. Molina, S. Bellucci, and A. Tavolaro, Preparation of few-layer graphene dispersions from hydrothermally expanded graphite, Appl. Sci., 9, 2539 (2019). https://doi.org/10.3390/app9122539
  28. A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. J. P. r. l. Roth, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  29. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small, 6, 195-200 (2010). https://doi.org/10.1002/smll.200901173
  30. V. Koissin, T. Bor, Z. Kotanjac, L. Lefferts, L. Warnet, and R. Akkerman, Carbon nanofibers grown on large woven cloths: Morphology and properties of growth, C Journal of Carbon Research, 2, 19 (2016). https://doi.org/10.3390/c2030019
  31. N. Diaz Silva, B. Valdez Salas, N. Nedev, M. Curiel Alvarez, J. M. Bastidas Rull, R. Zlatev, and M. Stoytcheva, Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique, J. Nanomater., 2017, 10 (2017).
  32. S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon, 50, 3210-3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
  33. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  34. Y. C. G. Kwan, G. M. Ng, and C. H. A. Huan, Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum, Thin Solid Films, 590, 40-48 (2015). https://doi.org/10.1016/j.tsf.2015.07.051
  35. N. Diez, A. Sliwak, S. Gryglewicz, B. Grzyb, and G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment, RSC Adv., 5, 81831-81837 (2015). https://doi.org/10.1039/C5RA14461B
  36. C. Manoratne, S. Rosa, and I. R. M. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite, Mat. Sci. Res. India, 14, 19-30 (2017). https://doi.org/10.13005/msri/140104
  37. J. Loos, A. Alexeev, N. Grossiord, C. E. Koning, and O. Regev, Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging, Ultramicroscopy, 104, 160-167 (2005). https://doi.org/10.1016/j.ultramic.2005.03.007