• Title/Summary/Keyword: precursor method.

Search Result 921, Processing Time 0.027 seconds

Simultaneous Determination of Five Porphyrins in Human Urine and Plasma Using High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Hur, Yeoun;Tae, Sookil;Koh, Yun-Joo;Hong, Sung-Hyun;Yoon, Young Ho;Jang, Haejong;Kim, Sooji;Kim, Kyeong Ho;Kang, Seung Woo;Lee, Youngshin;Han, Sang Beom
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • A specific and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry method (LC-ESI-MS/MS) was developed and validated for the simultaneous quantification of porphyrins (coproporphyrin, pentacarboxylporphyrin, hexacarboxylporphyrin, heptacarboxylporphyrin, and uroporphyrin) in human plasma and urine. Acidified plasma samples and urine samples were prepared by using liquid-liquid extraction using ethyl acetate and protein precipitation with acetonitrile, respectively. The separation was achieved onto a Synergi Fusion RP column ($150mm{\times}2.0mm$, $4{\mu}m$) with a gradient elution of mobile phase A (0.1% formic acid in 2 mmol/L ammonium acetate, v/v) and mobile phase B (20% methanol in acetonitrile, v/v) at a flow rate of $450{\mu}L$/min. Porphyrins and the internal standard (IS), coproporphyrin I-$^{15}N_4$, were detected by a tandem mass spectrometer equipped with an electrospray ion source operating in positive ion mode. Multiple reaction monitoring (MRM) transitions of the protonated precursor ions and the related product ions were optimized to increase selectivity and sensitivity. The proposed method was validated by assessing selectivity, linearity, limit of quantification (LOQ), precision, accuracy, recovery, and stability. The calibration curves were obtained in the range of 0.1-100 nmol/L and the LOQs were estimated as 0.1 nmol/L for all porphyrins. Results obtained from the validation study of porphyrins showed good accuracy, precision, recovery, and stability. Finally, the proposed method was successfully applied to clinical studies on the autism spectrum disorder (ASD) diagnosis of 203 Korean children.

Synthesis of Single-Crystalline InSb Nanowires Using CVD Method and Study of Growth Mechanism in Open and Close System (CVD 방법을 이용한 단결정 InSb 나노와이어의 성장과 Open/Close 시스템에서의 반응 메커니즘 연구)

  • Kang, Eun Ji;Park, Yi-Seul;Lee, Jin Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.306-312
    • /
    • 2013
  • Single-crystalline InSb nanowire was synthesized on $SiO_2$ wafer via vapor-liquid-solid (VLS) mechanism using chemical vapor deposition method. According to the source container system (open or close) which contain InSb powder and $SiO_2$ wafer, the single-crystalline InSb nanowires have different growth mechanisms. Structural characterization of the InSb nanowires was examined by scanning electron microscope (SEM). Composition of the nanowires was investigated using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). This study demonstrates that length and diameter of the InSb nanowires are long and thick using open-boat system by VLS and additional vapor-solid (VS) mechanisms, because open-boat system can carry a large amount of vapor-phase InSb precursor than close-boat system.

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports (표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.214-218
    • /
    • 2014
  • In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

A study on the Frequency Dependence of Dynamic Pyroelectric Properties for $Pb_{l-x}La_{x}Ti_{l-x/4}O_3$ (x=0.1) (PLT(10)) Ferroelectric Thin Film ($Pb_{l-x}La_{x}Ti_{l-x/4}O_3$ (x=0.1) (PLT(10)) 강유전체 박막에서 동적 초전특성의 주파수의존성에 관한 연구)

  • 차대은;장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1008-1015
    • /
    • 2002
  • The fabricated La-modified lead titanate (PLT) thin film without poling treatment was investigated for modulation frequency dependence of pyroelectric properties by the dynamic method. $Pb_{l-x}La_{x}Ti_{l-x/4}O_3$(x=0.1) (PLT(10)) thin film haying 10 mol% La content was deposited on a Pt/$TiO_{x}$/$SiO_2$/Si substrate by sol-gel method. The PLT(10) thin film exhibits a relatively excellent dielectric property. The pyroelectric coefficient (p) of the PLT(10) thin film is 6.6 x $10^{-9}C$$textrm{cm}^2$$.$K without frequency dependence. The figure of merits for the voltage responsivity and specific detectivity are 1.03 x $10^{-11}C$.cm/J and 1.46 x $10^{-10}C$.cm/J, respectively The PLT(10) thin film has voltage responsivity (RV) of 5.IS V/W at 8 Hz. Noise equivalent power (NEP) and specific detectivity ($D^{*}$) of the PLT(10) thin film are 9.93 x $10^{-8}$W/$Hz^{1/2}$ and 1.81 x $10^{6}$cm.$Hz^{1/2}$/W at the same frequency of 100 Hz,, respectively The results means that PLT thin film having 10 mol% La content is suitable for the sensing materials of pyroelectric IR sensors.

Synthesis of Substrates for Gene Therapy Monitoring of HSV1-TK System (유전자 영상용 HSV1-TK 기질의 합성)

  • Choi, Tae-Hyun;Ahn, Soon-Hyuk;Choi, Chang-Woon;Lim, Sang-Moo;Awh, Ok-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.102-109
    • /
    • 2002
  • Purpose : In gene therapy, tumor cells expressing the herpes simplex virus thymidine kinase are sensitive to prodrugs. Potential prodrugs IVDU and IVFRU were synthesized and radiolabeled with radioiodine for noninvasive imaging of herpes simplex virus type 1 gene expression. Material and Methods : 5-(2-trimethysilyl) vinyl-2'-deoxyuridine and 5-(2-trimethylsilyl)vinyl-2'-fluoro-2'-deoxyuridine, precursors of 5-(2--iodo)viny l-2'-deoxy uridine(IVDU) and 5-(2-iodo)-2'-vinyl-2'-deoxy-2'-fluororibofuranosyl uracil(IVFRU), were synthesized from reaction of trans-1-trimethylsillyl-2-tri-n-butylstannylethylene with 5-iodo-2'-deoxyuridine and 5-iodo-2'-fluoro-2'-deoxyuridine, respectively, on the condition of Pd catalyst. These precursors were separated from reaction mixture by silica gel column chromatography method. Each precursor was radioiodinated with radioiodine by mixing with ICI oxidizing agent. These radioiodinated compounds were purified with HPLC. Radiohalogen exchange has been shown to be effective for the synthesis of products with lower specific activity. Similarly, carrier-added and high specific activity products have been isolated in respectable radiochemical yields using ICI method. Results : Synthetic yield of precursors, IVDU and IVFRU were 43% and 18%, respectively. Radiochemical purity of both compunds was over 98%. Conclusion : We synthesized precursors of IVDU and IVFRU for monitoring of HSV1-tk gene expression. Radiotracers were radioiodinated with high radiolabeling yield by ICI method.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors (졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동)

  • Jeong, Euh-Duck;Moon, Sung-Wook;Lee, Hak-Myoung;Won, Mi-Sook;Yoon, Jang-Hee;Park, Deog-Su;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2003
  • A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell I. Synthesis of La0.6Sr0.4Co1-xFexO3 and Reduction Reaction of Oxygen (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 I. La0.6Sr0.4Co1-xFexO3의 합성과 산소환원반응)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.543-553
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite type oxides as an oxygen electrode catalyst. The high surface area catalysts were prepared by malic acid method and had a formula of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35 and 0.50). From the result of XRD pattern and specific surface area due to the amount of Fe substitution and the consumption of ammonia-water, the complex formation of Fe ion with $NH_3$ was the main factor for both the phase stability of perovskite and the increase of specific surface area. Multi-step calcination was necessary to give a single phase of perovskite in catalyst precursor. The crystal structure of the catalysts was simple cubic perovskite, which was verified from the XRD patterns of the catalysts. The activity of oxygen reduction was monitored by the techniques of cyclic voltammetry, static voltage-current method, and current interruption method. The activity(current density) of oxygen reduction showed its minimum at x=0.01 and its maximum between 0.20 and 0.35 of x-value in $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$. This tendency was independent of the change of surface area.

  • PDF

Formation of Hexagonal Ferrite $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$) Prepared by Coprecipitation-oxidation Method (공침산화법에 의한 육방정 페라이트 $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$)의 생성)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1023-1029
    • /
    • 2001
  • Hexagonal ferrite $Co_2$Z(B $a_3$ $Co_2$F $e_{24}$ $O_{41}$ ) was prepared by various coprecipitation-oxidation methods. The formation of $Co_2$Z was studied in order to determine the optimal method. The $Co_2$Z composition hydroxides were prepared with the different oxidation and precipitation from the aqueous solution of $Ba^{2+}$, $Co^{2+}$ and F $e^{2+}$ chloride mixture. The coprecipitates were heat-treated at various temperatures, and their formation phases and microstructures were investigated from the analyses of DTA/TGA, powder XRD and SEM. The $Co_2$Z phase was observed in the case where the precursor will have the amorphous like oxyhydoxide($\delta$-FeOOH), and formed from $Ba_3$F $e_{32}$ $O_{51}$ , BaF $e_{12}$ $O_{19}$ (M-type) and $Ba_2$ $Co_2$F $e_{12}$ $O_{22}$ (Y-type). The $Co_2$Z was synthesized by the heat-treatment of the coprecipitate, which was prepared from the precipitation after oxidizing the chloride mixed solution, above 110$0^{\circ}C$.EX>.

  • PDF

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.