• 제목/요약/키워드: preclinical activity

검색결과 75건 처리시간 0.024초

Knockdown of GCF2/LRRFIP1 by RNAi Causes Cell Growth Inhibition and Increased Apoptosis in Human Hepatoma HepG2 Cells

  • Li, Jing-Ping;Cao, Nai-Xia;Jiang, Ri-Ting;He, Shao-Jian;Huang, Tian-Ming;Wu, Bo;Chen, De-Feng;Ma, Ping;Chen, Li;Zhou, Su-Fang;Xie, Xiao-Xun;Luo, Guo-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2753-2758
    • /
    • 2014
  • Background: GC-binding factor 2 (GCF2) is a transcriptional regulator that represses transcriptional activity of the epidermal growth factor receptor (EGFR) by binding to a specific GC-rich sequence in the EGFR gene promoter. In addition to this function, GCF2 has also been identified as a tumor-associated antigen and regarded as a potentially valuable serum biomarker for early human hepatocellular carcinoma (HCC) diagnosis. GCF2 is high expressed in most HCC tissues and cell lines including HepG2. This study focused on the influence of GCF2 on cell proliferation and apoptosis in HepG2 cells. Materials and Methods: GCF2 expression at both mRNA and protein levels in HepG2 cells was detected with reverse transcription (RT) PCR and Western blotting, respectively. RNA interference (RNAi) technology was used to knock down GCF2 mRNA and protein expression. Afterwards, cell viability was analyzed with a Cell Counting Kit-8 (CCK-8), and cell apoptosis and caspase 3 activity by flow cytometry and with a Caspase 3 Activity Kit, respectively. Results: Specific down-regulation of GCF2 expression caused cell growth inhibition, and increased apoptosis and caspase 3 activity in HepG2 cells. Conclusions: These primary results suggest that GCF2 may influence cell proliferation and apoptosis in HepG2 cells, and also provides a molecular basis for further investigation into the possible mechanism at proliferation and apoptosis in HCC.

한약 탕제를 이용한 항 Herpes virus 제제의 개발 연구 (Study on The Anti-HSV(Herpes Simplex Virus) Activity of Natural complex Products)

  • 박갑주;강봉주;신순식;남봉현;김남주
    • 한국한의학연구원논문집
    • /
    • 제1권1호
    • /
    • pp.495-508
    • /
    • 1995
  • In order to search for anti-HSV agents from natural complex products, we extended the number of specimens. Both methanol extract and boiling water extract of the natural complex products were screened to detect anti-HSV activity by MTT assay. Anti-HSV activities of thirteen natural complex products extracted by methanol and boiling water were screened. Three of 13 natural complex products extracted by methanol showed efficacy against HSV. Natural complex products showing anti-HSV activities as methanol extracts were No.3, 6, 11 and their Sl were 323.809, 2811.041 and 708.20. As water boiling extracts, No.8 and No.11 have displayed Sl of 16.45 and 60.39 respectively. Especially anti-HSV activities of natural complex products extracted by methanol No.6 was stronger than other ones.

  • PDF

Purification and Characterization of a New κ-Carrageenase from the Marine Bacterium Vibrio sp. NJ-2

  • Zhu, Benwei;Ning, Limin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.255-262
    • /
    • 2016
  • The carrageenan-degrading marine bacterium Vibrio sp. strain NJ-2 was isolated from rotten red algae, and κ-carrageenase with high activity was purified from the culture supernatant. The purified enzyme with molecular mass of 33 kDa showed the maximal activity of 937 U/mg at 40℃ and pH 8.0. It maintained 80% of total activity below 40℃ and between pH 6.0 and 10.0. The kinetics experiment showed the Km and Vmax values were 2.54 g/ml and 138.89 mmol/min/mg, respectively. The thin layer chromatography and ESI-MS analysis of hydrolysates indicated that the enzyme can endolytically depolymerize the κ-carrageenan into oligosaccharides with degrees of depolymerization of 2-8. Owing to its high activity, it could be a valuable tool to produce κ-carrageenan oligosaccharides with various biological activities.

Ebb-and-Flow of Macroautophagy and Chaperone-Mediated Autophagy in Raji Cells Induced by Starvation and Arsenic Trioxide

  • Li, Cai-Li;Wei, Hu-Lai;Chen, Jing;Wang, Bei;Xie, Bei;Fan, Lin-Lan;Li, Lin-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5715-5719
    • /
    • 2014
  • Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.

P-Glycoprotein-Based Drug-Drug Interactions: Preclinical Methods and Relevance to Clinical Observations

  • Aszalos, Adorjan
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.127-135
    • /
    • 2004
  • Multiple drug administration is common in elderly, HIV, and cancer patients. Such treatments may result in drug-drug interactions due to interference at the metabolic enzyme level, and due to modulation of transporter protein functions. Both kinds of interference may result in altered drug distribution and toxicity in the human body. In this review, we have dealt with drug-drug interactions related to the most studied human transporter, P-glycoprotein. This transporter is constitutively expressed in several sites in the human body. Its function can be studied in vitro with different cell lines expressing P-glycoprotein in experiments using methods and equipment such as flow cytometry, cell proliferation, cell-free ATP as activity determination and Transwell culture equipment. In vivo experiments can be carried out by mdr1a(-/-) animals and by noninvasive methods such as NMR spectrometry. Some examples are also given for determination of possible drug-drug interactions using the above-mentioned cell lines and methods. Such preclinical studies may influence decisions concerning the fate of new drug candidates and their possible dosages. Some examples of toxicities obtained in clinics and summarized in this review indicate careful consideration in cases of polypharmacy and the requirement of preclinical studies in drug development activities.

Anti-proliferation Effects of Isorhamnetin on Lung Cancer Cells in Vitro and in Vivo

  • Li, Qiong;Ren, Fu-Qiang;Yang, Chun-Lei;Zhou, Li-Ming;Liu, Yan-You;Xiao, Jing;Zhu, Ling;Wang, Zhen-Grong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.3035-3042
    • /
    • 2015
  • Background: Isorhamnetin (Iso), a novel and essential monomer derived from total flavones of Hippophae rhamnoides that has long been used as a traditional Chinese medicine for angina pectoris and acute myocardial infarction, has also shown a spectrum of antitumor activity. However, little is known about the mechanisms of action Iso on cancer cells. Objectives: To investigate the effects of Iso on A549 lung cancer cells and underlying mechanisms. Materials and Methods: A549 cells were treated with $10{\sim}320{\mu}g/ml$ Iso. Their morphological and cellular characteristics were assessed by light and electronic microscopy. Growth inhibition was analyzed by MTT, clonogenic and growth curve assays. Apoptotic characteristics of cells were determined by flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay, immunocytochemistry and terminal deoxynucleotidyl transferase nick end labeling (TUNEL). Tumor models were setup by transplanting Lewis lung carcinoma cells into C57BL/6 mice, and the weights and sizes of tumors were measured. Results: Iso markedly inhibited the growth of A549 cells with induction of apoptotic changes. Iso at $20{\mu}g/ml$, could induce A549 cell apoptosis, up-regulate the expression of apoptosis genes Bax, Caspase-3 and P53, and down-regulate the expression of Bcl-2, cyclinD1 and PCNA protein. The tumors in tumor-bearing mice treated with Iso were significantly smaller than in the control group. The results of apoptosis-related genes, PCNA, cyclinD1 and other protein expression levels of transplanted Lewis cells were the same as those of A549 cells in vitro. Conclusions: Iso, a natural single compound isolated from total flavones, has antiproliferative activity against lung cancer in vitro and in vivo. Its mechanisms of action may involve apoptosis of cells induced by down-regulation of oncogenes and up-regulation of apoptotic genes.

Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells

  • Shi, Xinli;Liu, Jingli;Ren, Laifeng;Mao, Nan;Tan, Fang;Ding, Nana;Yang, Jing;Li, Mingyuan
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.221-226
    • /
    • 2014
  • Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-$Ser^{392}$-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-$Ser^{392}$-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-$Ser^{392}$-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on $Ser^{392}$ presents an alternative for HCC chemotherapy.

치매 환자의 공격성 관리에 활용가능한 억간산(抑肝散)의 고전적, 비임상적, 임상적 근거현황 (Classical, Non-Clinical, and Clinical Evidence of Yokukansan for Alleviating Aggression: Scoping Review)

  • 이동윤;김제범;하다정;권찬영
    • 동의신경정신과학회지
    • /
    • 제32권2호
    • /
    • pp.111-127
    • /
    • 2021
  • Objectives: To review and analyze clinical and preclinical evidence of effectiveness, safety, and underlying mechanisms of yokukansan (YKS), a herbal medicine, in alleviating aggression. Methods: Classical records on YKS were searched in the Korean Traditional Medicine Knowledge Database (KTMKD). By searching five electronic databases, prospective clinical studies and preclinical studies of YKS for alleviating aggression/agitation published up to March 30, 2021 were included. Results: Only two classical records on YKS were found from the KTMKD. A total of 11 clinical studies and 15 preclinical studies were found from the five electronic databases. Among 11 clinical studies, seven enrolled patients with dementia and four enrolled patients with other neuropsychiatric disorders. Most clinical studies reported significant improvement in one or more outcomes related to aggression in the YKS group after treatment. Among 15 preclinical studies, all studies except two reported a significant decrease in aggression/agitation-related behavior of YKS or yokukansankachimpihange. Suggested underlying mechanisms of YKS or yokukansankachimpihange for aggression/agitation in these studies included regulation of serotonin receptor, amelioration of abnormal glucocorticoid level related to the hypothalamic-pituitary-adrenal axis, regulation of orexin secretion, amelioration of degeneration in brain cells including glia cells, and suppression of excessive glutamatergic or dopaminergic activity. Conclusions: There were some clinical and preclinical evidence supporting the effectiveness and safety of YKS for alleviating aggression. Given that aggression is the most frequent and destructive symptoms of behavioral and psychological symptoms of dementia, applicability of YKS as a herbal medicine should be further investigated in future high-quality research.

Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

  • Kim, Ji Sung;Kim, Yong Guk;Pyo, Minji;Lee, Hong Kyung;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.58-65
    • /
    • 2015
  • Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.