• Title/Summary/Keyword: precision motion control

Search Result 587, Processing Time 0.028 seconds

Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation (네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어)

  • Kim, Bong-Keun;Park, Hyun-Taek;Chung, Wan-Kyun;Suh, Il-Hong;Song, Joong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

A Study on the Obstacle Avoidance of a Multi-Link Robot System using Vision System (Vision System을 이용한 다관절 로봇팔의 장애물 우회에 관한 연구)

  • 송경수;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.691-694
    • /
    • 2000
  • In this paper, a motion control algorithm is proposed by using neural network system, which makes a robot arm successfully avoid unexpected obstacle when the robot is moving from the start to the goal position. During the motion, if there is an obstacle the vision system recognizes it. And in every time the optimization-algorithm quickly chooses a motion among the possible motions of robot. The proposed algorithm has a good avoidance characteristic in simulation.

  • PDF

Operating Method of Network Interpolation for Motion Control Device (모션 제어장치의 네트워크 보간 운전방법)

  • Kwak, Gun-Pyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.713-718
    • /
    • 2002
  • Motion controllers are essential components for operating industrial equipments. Compared with general industrial controllers, motion controllers allow motion control requiring greater speed and precision. This paper presents a method for controlling multi-axes motors via industrial networks. To achieve a line or arc interpolation, the master system delivers instructions to slave systems connected to the network. The network instruction transmitted from the master controller is re-interpolated by the individual slaves through sub-interpolators. The re-interpolated feedrate information is transmitted to the motion control loop in which the current position and the reference position are then calculated. In this way, the interpolation driving between control units is achieved via industrial networks.

A Study on Feed Dog Motion of a Lock Stitch Sewing Machine (본봉용 재봉기의 톱니 운동에 관한 연구)

  • 전경진;송창섭;신대영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.37-47
    • /
    • 1998
  • This study discusses the feed dog feeding mechanism of an industrial lock stitch sewing machine, which is a good example to study a machine kinematics. The feed dog feeding mechanism makes the fabrics directly be fed by an elliptic motion of the feed dog that is moved by a rotation of the top shaft and controlled by the feeding control mechanism. This study makes mathematical expressions of machine's motion in the feed dog feeding mechanism. Thus, the motions of this mechanism are characterized, namely how an elliptic motion of the feed dog is affected by the feeding control mechanism. Therefore, the above mathematical expressions may be a basis for the new design of the feed dog feeding mechanism and may be adapted to analysis. Development of the similar feed dog feeding mechanism can be applied to other type sewing machine.

  • PDF

Implementation of Active Impedance Based on Linear Motors (리니어 모터에 근거한 능동 임피던스 구현)

  • 이세한;송재복;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.462-465
    • /
    • 1995
  • In this research a 2-dimensional motion producer based on two linear motors was developed. When the tester provides some motion through the level attached to the upper moving part of the motion producer, it provides the arbitrary intertia, damping and stiffness characteristics without actual change in physical structure of the motion producer. That is, the active impedance is implemented by controlling input currents supplied to the linear motors. A PID controller with feedforward loop was used to control the currents and pre-processing of input velocity and accleration singals from the encoder and the current singnal from the motor driver circuit are conducted to improve the performance.

  • PDF

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

Development of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 개발)

  • Shin, Kyu-Hyeon;Lee, Soo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.64-71
    • /
    • 2009
  • A 3-D rehabilitation robot system is developed in this paper. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for enabling occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system, which is driven by actuators, has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. Passive motion mode experiments have been performed to evaluate the proposed robot system. The results of the experiments show and excellent performance in simulating spasticity of patients.

A Study on the Trajectory Optimization Planning of Biped Walking Machine (이족 보행 로봇의 궤적의 최적화 계획에 관한 연구)

  • 김창부;조현석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

Implementation of FES Cycling using only Knee Muscles : A Computer Simulation Study (슬관절 근육만을 이용한 FES 싸이클링 : 컴퓨터 시뮬레이션 연구)

  • 엄광문;김철승;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.171-179
    • /
    • 2004
  • The purpose of this study is to generate cycling motion for FES (functional electrical stimulation) using knee muscles only. We investigated the possibility by simulation. The musculoskeletal model used in this simulation was simplified as 5-rigid links and 2 muscles (knee extensor and flexor). For the improvement of the present feedforward control in FES, we included feedback path in the control system. The control system was developed based on the biological neuronal system and was represented by three sub-systems. The first is a higher neuronal system that generates the motion command for each joint. The second is the lower neuronal system that divides the motion command to each muscle. And the third is a sensory feedback system corresponding to the somatic sensory system. Control system parameters were adjusted by a genetic algorithm (GA) based on the natural selection theory. GA searched the better parameters in terms of the cost function where the energy consumption, muscle force smoothness, and the cycling speed of each parameter set (individual) are evaluated. As a result, cycling was implemented using knee muscles only. The proposed control system based on the nervous system model worked well even with disturbances.

Motion Planning for a Mobile Manipulator using Directional Manipulability (방향성 매니퓰러빌리티를 이용한 주행 매니퓰레이터의 운동 계획)

  • Shin Dong Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.95-102
    • /
    • 2005
  • The coordination of locomotion and manipulation has been the typical and main issue for a mobile manipulator. This is particularly because the solution for the control parameters is redundant and the accuracies of controlling the each joints are different. This paper presents a motion planning method for which the mobile base locomotion is less precise than the manipulator control. In such a case, it is appropriate to move the mobile base to discrete poses and then to move the manipulator to track a prescribed path of the end effector, while the base is stationary. It uses a variant of the conventional manipulability measure that is developed for the trajectory control of the end effector of the mobile manipulator along an arbitrary path in the three dimensional space. The proposed method was implemented on the simulation and the experiments of a mobile manipulator and showed its effectiveness.