• Title/Summary/Keyword: precision motion control

Search Result 587, Processing Time 0.029 seconds

Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어)

  • Lee, Soo-Han;Shin, Kyu-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

Design of Contour Error Models using Contour Error Vector (윤곽오차 벡터를 이용한 윤곽오차 모델 설계)

  • 최정희;이명훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.895-898
    • /
    • 2003
  • The higher precision is demanded in modem manufacturing and it requires the more accurate servo controller. Cross-coupling control (CCC) has been developed to improve contouring motion. In this paper we introduce a new nonlinear CCC that is based on contour-error-vector using a parametric curve interpolator. A vector from the actual tool position to the nearest point on the desire path is directly adopted. The contour-error-vector is determined by constructing a tangential vector of nearest point on desired curve and determining the vector perpendicular to this tangential vector from the actual tool position. Moreover, the vector CCC can apply directly and easily to free-form curves include convex and concave form. The experimental results on a three-axis CNC machine center show that the present approach significantly improves motion accuracy in multi-axis motion

  • PDF

Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성구조물의 충돌에 의한 충격력 재현)

  • 조창기;이규섭;류봉조;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.293-296
    • /
    • 2002
  • This work presents the reconstruction of impact force produced by the collision between two elastic structures. The 2-DOF impactor was designed. The shape control of impact farce using correlations of the dynamic characteristics and impact force history between two elastic structures is accomplished. The effects of the relative motion between impactor and elastic structure on the impact force shape are studied. Reconstruction characteristics of impact force in cantilever beam are reviewed.

  • PDF

Controller Design for a Robot's Safe Contact on an Object (로봇의 안전한 물체 접근을 위한 제어기 구성)

  • 신완재;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1078-1081
    • /
    • 2004
  • A robot manipulator is usually operated in two modes: free motion and constraint motion depending on whether the robot comes into contact with the environment or not. At the moment of contact, impact occurs, and sometimes, it possibly degrade the robot's performance by vibration and at worst, shortens its lifetime. In this article, a new proposed algorithm is described by introducing a command signal modification method on the basis of impedance control and a validity of the proposed algorithm is demonstrated by showing a simulation and an experiment.

  • PDF

Improvement of Motion Accuracy Using Active Controlled Capillary in Hydrostatic Table (능동제어모세관을 이용한 유정압테이블의 운동정도 향상)

  • Park, C.H.;Song, Y.C.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.114-120
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clearance of table is controlled corresponding to the amount of eror with the actively controlled variable capillary, named as ACC. In previous paper, through the basic test, it was confirmed that by the use of ACC, the error motion within 2.7$\mu$ m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the frequency bandwidth of 5.5Hz, structurally. In this paper, we performed practical compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy, iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error, the linear and angular motion error are improved upto 0.25$\mu$ m and 0.4arcsec, which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

  • PDF

Study on the Collision Avoidance of a Redundant Robot Arm Using Fuzzy Control (퍼지 제어기를 이용한 여유자유도 로봇 팔의 장애물 우회에 관한 연구)

  • 황재석;박찬호;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.345-348
    • /
    • 1997
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During the motion, if there exists no obstacle, the end-effecter of the robot arm moves along the pre-defined path. But if there exists an obstacle and close to the robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture for collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sizes of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

  • PDF

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Realization of Planar 3 D.O.F Motion Emulator (평명 3자유도 운동 에뮬레이터 구현)

  • Park, Sung-Won;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.65-73
    • /
    • 2001
  • In this paper, a mobile system using multi-wheel steering and driving mechanism is proposed to maximize maneuverability of the wheeled mobile system. Among various possible configurations, the two-wheel steering and driving systems, which is minimal in structural requirement, is proposed to reduce the complexity in actual design and difficulties in control. The system possesses three or four degrees of freedom depending on the orientations of two wheels, one or two for driving and two for steering, which implies that the system's mobility is always less than three DOF. The proposed system, nonetheless, can exactly emulate characteristics of the omnidirectional motion as long as the planned path is smooth i.e., the curvature changes continuously while velocity is not zero. Efficient kinematic and dynamic control algorithms are proposed for position and orientation control of the proposed wheeled mobile system.

  • PDF

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems (두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법)

  • 김성권
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.