• Title/Summary/Keyword: precision motion control

Search Result 587, Processing Time 0.033 seconds

유니사이클 로봇의 주행경로를 변경하기 위한 퍼지룰의 구성

  • 김중완;안찬우;전언찬;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.761-765
    • /
    • 1997
  • Our study of rider's postulator stability and tracking control on a unicycle began form the observation of a human riding. The system including unicycle and human operationg his unicycle is a fuzzy intelligent biomechanical model on basis of instinct and intuition search mechanisms. We proposed a robotic unicycle with one wheel and one body as a basic mode and derived equation of motion to this model. Our works is in making out fuzzy look-up table to control robotic unicycle. Fuzzy look-up table were determined for staight line and curve under reasonable inference emulating human's instinct and intuition riding a unicyale. Simulation results show that postulator stability and tracking control on both straight line and curve were successful by using proposed each fuzzy look-up table.

  • PDF

Dual Stage Servo Controller for Image Tracking System (듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 정밀제어)

  • Choi, Young-Joon;Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.86-94
    • /
    • 2007
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve control performances such as small rise time, small overshoot, small settling time, small stabilization error etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving responses and attenuating the disturbance response related with dynamic coupling.

고속 디지탈 퍼지 추론회로 개발과 산업용 프로그래머블 콘트롤러에의 응용

  • 최성국;김영준;박희재;고덕용;김재옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.354-358
    • /
    • 1992
  • This paper describes a development of high speed fuzzy inference circuit for the industrialprocesses. The hardware fuzzy inference circuit is developed utilizing a hardware fuzzy inference circuit is developed utilizing a DSP and a multiplier and accumulator chip. To enhance the inference speed, the pipeline disign is adopted at the bottleneck and the general Max-Min inference method is slightly modified as Max-max method. As a results, the inference speed is evaluated to be 100 KFLIPS. Owing to this high speed feature, satisfactory application can be attained for complex high speed motion control as well as the control of multi-input multi-output nonlinear system. As an application, the developed fuzzy inference circuit is embedded to a PLC (Porgrammable Logic Controller) for industrial process control. For the fuzzy PLC system, to fascilitate the design of the fuzzy control knowledge such as membership functions, rules, etc., a MS-Windows based GUI (Graphical User Interface) software is developed.

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

The Posture Control of One-wheel Unicyle Robot Using Partial Feedback Linearization (부분 피드백 선형화를 이용한 One-wheel Unicycle Robot의 자세 제어)

  • Kim, Jin-Seok;Cho, Young-Jin;Kim, Young-Tark
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.68-75
    • /
    • 2007
  • In this study, the ultimate goal is to acquire stability when turning around efficiently by using the controller which is applied partial feedback linearization of One-wheel Unicycle Robot. When moving around, linear controller could result in unstable factor according to widening operation range. So in order to reduce instability, 1 have developed Non-linear Controller using Partial Feedback Linearization. Compared with linear controller, Non-linear Controller guarantees the superiority of Regulating Control and Tracking Control in direct and also revolution motion of Robot. I'm sure of the Non-linear controller performance through many experiments.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Improvement of circular cutting using adaptive control in micro milling with piezo-actuator (마이크로 밀링에서 적응제어를 이용한 피에조 구동기의 원주가공의 성능향상)

  • Kim T.H.;Ko T.J.;Chung B.M.;Kim H.S.;Seok J.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.543-550
    • /
    • 2005
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step by step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes an adaptive control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

  • PDF

Motion Characteristics of Smart Capsule with Triangular Arrangement of Actuators (삼각 배치 구동에 의한 스마트 캡슐의 이동 특성)

  • 임형준;민현진;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.854-857
    • /
    • 2001
  • At present, colonoscopy is performed by means of quite long and flexible endoscopes and controlled manually. Although the flexibility of the distal tip allows the endoscope to follow the tortuous path of the colon, the insertion of the endoscope requires the endoscopist to exert forces on and to perform rotations of the proximal end; these actions cause discomfort to the patient. Though self-propelling colonoscopic systems has been suggested to overcome these problems, it is difficult to pass through highly curved regions of the intestine. In this paper, we introduce a steering mechanism for a self-propelling coloinlscope, the smart capsule, which has three actuator units. The mechanism is designed not only to move forward and backward but also to pass through the curved regions. We derived the governing equations of this mechanism. Active movements and motion control are developed.

  • PDF

A Study on the Position Control Improvement of Flexible Robot Arm by Inverse Dynamics (역학을 이용한 탄성 로보트 아암의 선단 위치 제어 기어에 대한 연구)

  • 방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.9-13
    • /
    • 1997
  • This parer is a study on the inverse dynamics of a one-link flexible robot arm which is controlled by translational base motion. The system is composed of a flexible arm, a base for driving arm, a DC servomotor, and a computer. The arm base is moved so that the arm tip follows a desired function. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method. Moter voltage is obtained by simulation for tip trajectory functions i. e. Bang-Bang, Cosine and Gauss Function. And, the tip motion is measured while simulation results are applying. Then the results are investigated to select most proper input and to compare their chateristics. Experimental results show the Cosine function is most proper with respect to low maximum voltage and steady state error.

  • PDF

Study on the Target Tracking of a Mobile Robot Using Active Stereo-Vision System (능동 스테레오 비젼을 시스템을 이용한 자율이동로봇의 목표물 추적에 관한 연구)

  • 이희명;이수희;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.915-919
    • /
    • 2003
  • This paper presents a fuzzy-motion-control based tracking algorithm of mobile robots, which uses the geometrical information derived from the active stereo-vision system mounted on the mobile robot. The active stereo-vision system consists of two color cameras that rotates in two angular dimensions. With the stereo-vision system, the center position and depth information of the target object can be calculated. The proposed fuzzy motion controller is used to calculate the tracking velocity and angular position of the mobile robot, which makes the mobile robot keep following the object with a constant distance and orientation.

  • PDF