• Title/Summary/Keyword: precision motion control

Search Result 587, Processing Time 0.029 seconds

A Study on Contact angle of the Linear Guide Way (리니어 가이드 웨이의 접촉각에 관한 연구)

  • Lee, Sun-Kon;Park, Young-Gee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.11-16
    • /
    • 2009
  • This research investigates contact angle of Linear Guide Way through a experimental result and theoretical analysis. Since last ten years, most of researchers who concerned with the precision machinery and semiconductor device production etc. so the researches about Linear Guide Way have been unnoticed. The precision machinery and semiconductor device production system has the principle which transfers the mechanical moving to accuracy position control. The Linear Guide Way system has the principle which transfers mechanical moving to accuracy position control is very important to improve performance of the precision machinery and semiconductor device production system. So, In this research, in order to improvement for producing Linear Guide Way, bearing loading analysis and contact angle change through Linear Guide Way theoretical analysis and bearing modeling. Through this study, we may expect that there will be more improvement for producing Linear Guide Way.

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.

Dose perturbation measurements during the liver treatment with internal organ motion: Mathematical modeling and Experimental simulation (호흡에 의한 내부 움직임의 영향이 있는 간에서의 실험적 선량 측정)

  • Chung, Jin-Bum;Kim, Yon-Lae;Chung, Won-Kyun;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.115-118
    • /
    • 2004
  • Respiratory motion in the thorax and abdomen is an important limiting factor in high-precision radiation therapy. The lung tumor and tumor(pancreas, stomach) in abdomen therefore are internal motion due to breathing. We will perform to measurement of dose distributions for these moving tumors. In preliminary study, we investigated displacement of moving tumor such as liver, lung tumor in abdomen with previously reported papers. With reference data, internal movements of tumor are displayed with phantom and moving control device(MCD), which appear three dimension (3-D) motion such as x, y and z axis. These devices are used to access dose delivered in tumor with and without internal motion. The MCD and phantom were used to evaluate a delivered dose under similar condition, although there are not same internal tumor motion. In future, we will obtain the exact evaluation of dose if improved in programed software of moving control device and measure precise internal motion using image modality such as fluoroscopy, simulator in based on this study.

  • PDF

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

A Study on the Worter-gate Control Device Development using Radio Communication (무선통신을 이용한 수문제어장치 개발에 관한 연구)

  • 이진구;김인주;정영재;손준식;성백섭;김일수;박창언
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.612-615
    • /
    • 2002
  • This paper begin a new approach in the water-gate control using radio communication. The dissertation is on the controllable device development of water-gate in the remote distance from water-gate trough the transceiver by radio communication. The proposed water-gate control device is simpe in structure, an suitable for implementation of water-gate control in the remote distance. The remote controller water-gate device inspected the up and down motion of water-gate through the LCD displayer, so that it was very safety driving about the surroundings imformation, over loading and position of water-gate, and so on.

  • PDF

Improvement of circular cutting using adaptive control in micro milling with piezo-actuator (피에조 구동기의 마이크로 밀링에서 적응제어를 이용한 원주가공의 성능향상)

  • Chung B. M.;Ko T. J.;Seok J. W.;Kim H. S.;Park J. K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.201-208
    • /
    • 2006
  • Recently, there are many studies for the micro-machining using Piezo actuator. However, because of its step-by-step motion, it is nearly impossible to increase the machining accuracy for a circular path. To increase the accuracy, it is well known that it is necessary the finer and synchronous movement for x-y axes. Therefore, this paper proposes an adaptive control for finer movement of the actuator, and realizes a synchronous control for the x-y axes. The experimental results show that the machining accuracy is remarkably improved.

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF

A Study on the Design of a Digital Controller for DC Servo Motor (서보 모터의 디지털 제어기 설계에 관한 연구)

  • Lee, Doo-Bok;Hong, Eon-Sik;Choe, Hong-Kyu;Chae, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-35
    • /
    • 1987
  • This paper deals with the design of the digital controller for DC servo motor, and it is implemented for the cartesian coordinate 4 axes manipulator. A design method of the controller is adopted an algorithm using the digital position locked loop(DPLL) method and the linear PID control for the smooth motion. To simplify the hardware configuration of control system, 8279 keyboard/display controller, Z-80 CTC counter and 8255 PPI are used. Therefore the design method to control each motor as real-time is presented. To show effectiveness of the design, the PWM circuit and frequency/voltage converter are applied for the velocity control of robot system. When the proposed controller is applied to the 4-axes manipulator, it reveals that the error probabilities of X, Y and Z axis as 0.033%, 0.023% and 0.028% respectively.

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF