• Title/Summary/Keyword: precision landing

Search Result 67, Processing Time 0.032 seconds

Research of the Delivery Autonomy and Vision-based Landing Algorithm for Last-Mile Service using a UAV (무인기를 이용한 Last-Mile 서비스를 위한 배송 자동화 및 영상기반 착륙 알고리즘 연구)

  • Hanseob Lee;Hoon Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.160-167
    • /
    • 2023
  • This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.

A Study on the Heat-treatment Technique for Deformation Control of SM45C steel (SM45C 강의 변형제어를 위한 열처리기술에 관한 연구)

  • Ryu, Seong-Gi;Nam, Tae-Hyeon;Park, Jun-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2001
  • This study deals with the heat-treatment technique of SM45C steel with respect to less of deformation in control. The whole process for the production of landing gear must go through with uniformally controlled heat treatment, where as most deformation usually occur in nonuniform cooling environment. When a heated metal is submerged into a certain quenchant, the rate of cooling rapidity can be measured rather slow during the early stage of the procedure due to an Occurrence of a vapor blanked. As the additional course of cooling action is applied and the vapor from a vapor blanked is destroyed simultaneously, the speed of cooling promptness can be considered rather swift. The object of this study is to control the certain deformations as in the procedure of a heat treatment for landing gear by analyzing and improving the conditions of different substance of quenching liquids. Several noticeable curves indicating the temperature variation on the ap-plied metals during the cooling procedures, along with detectable rates of water verses oil and that of different polymer solutions are illustrated.

  • PDF

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

A Study for Estimation of Benefit from Upgrading Precision Approach Runway Category (정밀접근활주로 등급 상향에 따른 편익산정에 관한 연구)

  • Kim, HuiYang;Kweon, PilJe;Park, JangHoon;Baik, HoJong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.70-81
    • /
    • 2019
  • The effects of weather on aircraft operations are predominant. In particular, severe weather, such as fog, strong winds, rainfall and snow, can cause delays, diversion or cancellation of operations. Of these, fog is considered the main reason for restricting aircraft operations. Meanwhile, Precision instrument approach using instrument landing system(ILS) has allowed aircraft to land safely even in situations where visibility is limited. However, the precision instrument approach require not only the performance of the aircraft but also the enhancement of the runway. In November 2018, Gimpo international Airport raised the category of the runway 14R from CAT-IIIa to CAT-IIIb to improve aviation safety and operational efficiency. Based on this, the research presented a methodology for estimating benefits according to the category upgrade of the precision approach runway, and estimated the benefits to Gimpo International Airport based on the methodology presented.

KARI-LAAS Performance with Modernized GPS

  • Oh, Kyung-Ryoon;Kim, Jung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2636-2640
    • /
    • 2003
  • KARI had developed an Local Area Augmentation System for aircraft precision landing as following ICAO SARPs(Standards and Recommended Practices) draft and FAA's recommended algorithm( carrier smoothing techniques). JPO in charge of managing GPS has introduced the signal structure of GPS modernization program. This paper estimates the accuracy performance of KARI-LAAS with modernized GPS signal but the same processing algorithm.

  • PDF

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

The Deviation Distribution of Target on the ILS Final Approach Segment Using ADS-B Message (ADS-B 신호를 이용한 ILS 최종접근 구간의 항공기 항적 이격 분포 도출)

  • Ku, SungKwan;Lee, Young-Jong;Shin, DaiWon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.403-410
    • /
    • 2015
  • ADS-B can provide high accurate position information and faster update rate than Radar system and it is a technique that can supplement or replace the Radar. Recently ADS-B has been applied to the actual aircraft operation because to increase air transportation traffic and required to high accurate surveillance. In this study, we surveyed analysis of position deviation distribution analysis and received actual ADS-B trajectory data for conformed precise surveillance on the near airport area using ADS-B message. For that, we received the precision instrument approach ADS-B trajectory data using instrument landing system, and can analyse about target deviation distribution on the final approach segment about precision instrument approach. The result of analysis is mean distance of target deviation -0.04 m and standard deviation 6.71 m on between ADS-B target and extended runway centerline. Also that is to conformed the ADS-B message trajectory available to provide relatively exact surveillance information.

Conceptual Study on Coaxial Rotorcraft UAV for teaming operation with UGV (무인지상차량과의 합동운용을 위한 동축반전 회전익형 무인항공기 개념연구)

  • Byun, Young-Seop;Song, Jun-Beom;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.458-465
    • /
    • 2011
  • UAV-UGV teaming concept has been proposed that can compensate for weak points of each platform by providing carrying, launching, recovery and recharging capability for the VTOL-UAV through the host UGV. The teaming concept can expand the observation envelop of the UGV and extend the operational capability of the UAV through mechanical combination of each system. The spherical-shaped coaxial rotorcraft UAV is suggested to provide flexible and precise interface between two systems. Hybrid navigation solution that included vision-based target tracking method for precision landing is investigated and its experimental study is performed. Feasibility study on length-variable rotor to provide the compact configuration of the loaded rotorcraft platform is also described.

Dynamic Characteristics Measurement of Micro Mirror for Image Display (화상처리용 마이크로 미러의 동특성 측정기술)

  • 이은호;김규로
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.371-376
    • /
    • 1997
  • A 100*100.mu.m$^{2}$ aluminum micro mirror is designed and fabricated using a thick photoresist as a sacrificial layer andas a mold for nickel electroplating. The micro mirror is composed of aluminum mirror plate, two nickel support posts, two aluminum hinges, two address eletrodes, and two landing electrodes. The aluminum mirror plate,which is supported by two nickel support posts, is overhung about 10.mu.m from the silicon substrate. THe aluminum mirror plate is actuated like a seesaw by electrostatic force generated by electic potential difference applied between the mirror plate and the address electrode. This paper presents some methods to measure the optical and the dynamic characteristics of the fabricated micro mirror.

  • PDF

A Study on Design Method and Control of Blimp-4 Rotor Craft (Blimp형 4 Rotor Craft의 설계방법에 관한 연구)

  • 박윤수;이호길;김진영;원대희;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.996-1000
    • /
    • 2003
  • In this paper, Fly robot with electric power, a kind of Unmanned aerial vehicle (UAV), is considered as an autonomous hovering platform, capable of vertical lift-off, landing and stationary hovering. This aircraft has four rotor and DC motors of electrical Power, which is capable of omni-direction for indoor application. In the earlier days of vertical flight experimentation developers looked at the intuitively easy control functionality of 4 rotor designs. But we need to obtain design method of suitable structures and adequate components because the existing prototypes of 4 rotor-craft don't analyze the propeller, motor characteristic and propose a methodology to optimize this system. In this paper, we will show the new 4 rotor craft with blimp, analyze design and manufacturing method of 4 rotor craft system. Also we prove propriety of our design and manufacturing method by being based on thrust and motor experiment.

  • PDF