• Title/Summary/Keyword: precise orbit determination

Search Result 75, Processing Time 0.027 seconds

Orbit Determination System for the KOMPSAT-2 Using GPS Measurement Data

  • Lee, Byoung-Sun;Yoon, Jae-Cheol;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2325-2330
    • /
    • 2003
  • GPS based orbit determination system for the KOMPSAT-2 has been developed. Two types of orbit determination software such as operational orbit determination and precise orbit determination are designed and implemented. GPS navigation solutions from on-board the satellite are used for the operational orbit determination and raw measurements data such as C/A code pseudo-range and L1 carrier phase for the precise orbit determination. Operational concept, architectural design, software implementation, and performance test are described.

  • PDF

ORBIT DETERMINATION OF GPS AND KOREASAT 2 SATELLITE USING ANGLE-ONLY DATA AND REQUIREMENTS FOR OPTICAL TRACKING SYSTEM (GPS 위성과 무궁화 2호의 광학관측데이터를 이용한 궤도 결정 및 정밀 궤도 결정을 위한 광학관측시스템 제안)

  • Lee, Woo-Kyoung;Lim, Hyung-Chul;Park, Pil-Ho;Youn, Jae-Hyuk;Yim, Hong-Suh;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2004
  • Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLB and SGP4/SDP4 orbit propagation model.. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory) and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

Development and Application of the Automated Precise Orbit Determination System (정밀궤도결정 자동화 시스템 개발 및 응용)

  • Kim, Hae-Dong;Jung, Ok-Chul
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.167-174
    • /
    • 2011
  • This paper describes the development of an autonomous system for the precise orbit determination (POD) using GPS raw data. Orbit processing requiring the orbit determination (OD) accuracy of 1m ($1{\sigma}$) or sub-meter is relatively complicated comparing to that of more than several meters. The architecture of the developed system for processing POD automatically and the test results of it were presented. The implemented system is able to be used to the flight dynamics system of the satellite mission control system and moreover can be applied to the multi-satellite POD system by means of incorporating with the automated operational orbit processing system (i.e., Kgs automated Operational Orbit Processing System, KOOPS), which was already developed by the authors.

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

Precise Orbit Estimation of GPS using GIPSY-OASIS (GIPSY-OASIS기반 GPS 정밀 궤도 추정)

  • Ha, Jihyun;Chun, Sebum;Park, Kwan-Dong
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • In this paper, scripts for estimating the reference orbits of navigation satellites were developed and their performance was analyzed as a preliminary study for the development of the Korean GPS precise orbit determination technology. The JPL Flinn AC's data processing strategy was applied and Linux-based scripts were developed using GIPSY-OASIS. For the analysis of the accuracy of the estimated reference orbit, the precise orbit provided by the international GNSS data center was used as the truth. As a result, estimated satellite coordinates showed almost exactly same patterns and trends with the reference precise orbits, and their differences are in the range of ±2 cm. The average error between the two orbits was less than 1 cm in the 3D direction, while the standard deviation was also at 1 cm. From these, we found that the developed scripts have excellent performance in precise orbit determination.

PRECISE OR81T DETERMINATION OF GPS-36 SATELLITE USING SATELLITE LASER RANGING (SLR을 이용한 GPS-36 위성의 정밀 궤도 결정)

  • 임형철;박관동;박필호;박종욱;조정호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.385-394
    • /
    • 2002
  • Satellite laser ranging is a technique for precisely measuring the range between a laser station and a satellite that is equipped with retro-reflectors. SLR technique was first used for Beacon-B satellite in 1964 with the ranging accuracy of meter level. Now the single shot have centimeter level accuracy and the normal point have mm level in ranging. In this study we developed the algorithm for precise orbit determination using SLR data and performed the orbit determination of GPS-36 satellite using the algorithm. RMS of the estimated orbit was 74cm when compared with IGS precise orbit. It is known that RMS of SLR measurement residual is below 55mm. But we were able to achieve 44mm RMS of residual throughout this study.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite (정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.661-673
    • /
    • 2014
  • In this paper, a precise orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute), in which optical tracking data of a geostationary satellite was used. The real optical tracking data provided by ESA(European Space Agency) for the ARTEMIS geostationary satellite was used. And orbit determination error was approximately 420 m compared to that of the ESA's orbit determination result from the same optical tracking data. In addition, orbit prediction was conducted based on the orbit determination result with optical tracking data for 4 days, and the position error for the orbit prediction during 3 days was approximately 500~600 m compared to that of ESA's result. These results imply that the performance of the KARISMA's orbit determination function is suitable to apply to the collision risk assessment for the space debris.

Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.275-285
    • /
    • 2012
  • In this study, we present preliminary results of precise orbit determination (POD) using satellite laser ranging (SLR) observations for International Laser Ranging Service (ILRS) Associate Analysis Center (AAC). Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS) value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF) is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.