• Title/Summary/Keyword: precious metal-ceramic alloy

Search Result 16, Processing Time 0.022 seconds

A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

  • Hong, Jun-Tae;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.372-378
    • /
    • 2014
  • PURPOSE. The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS. Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (${\alpha}=.05$). RESULTS. The 3-point bending test showed the strongest ($40.42{\pm}5.72$ MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy ($37.71{\pm}2.46$ MPa), precious metal alloy containing 83% of gold ($35.89{\pm}1.93$ MPa), and precious metal alloy containing 32% of gold ($34.59{\pm}2.63$ MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION. The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

FLEXION EFFECTS OF HEAT TREATMENT AND POST-SOLDRING OF CERAMO-METAL FIXED PARTIAL DENTURE FRAMEWORKS USING HOLOGRAPHIC INTERFEROMETRY (Holographic Interferometry를 이용한 하악 구치부 도재소부 전장관용 금속 구조물의 굴곡성향에 대한 연구)

  • Choi, Jin-Woong;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.869-902
    • /
    • 1996
  • Flexion of a metal/ceramic fixed partial denture(EPD) frameworks under function can cause fracture of porcelain or deterioration of the cement seal. This study evaluated the flexion characteristics of three-unit mandibular FPD frameworks, repacing the second pre-molar under compressive load(200g, 400g). Testing was accompished with real-time holographic interferometry, using 6 porcelain fused-to metal frameworks. Tested alloys were non-precious alloy(Heracles, Holland), semi-precious alloy(Degudent U, Germany) and precious alloy(Degudent H, Germany). Changes of the fringe patterns according to the heat treatment(porcelain firing cycle), various loads(200g, 400g), occlusal forms(occlusal porcelain veneering, facial porcelain veneering), various alloys and post-soldering units were compared. Dental study model(Nissan dental products, Inc. D51DP-500A, Japan) and six 3-unit metal/ceramic fixed partial denture frameworks were used as experimental materials. 36 holograms were taken on fixed dental study model by using the 10mW He-Ne laser and real-time holographic interferometry. On the basis of this study, the following conclusions can be drawn : 1. In the frameworks for facial porcelain veneering, the semi-precious alloy framework was least deformed and precious alloy framework, non-precious alloy framework orderly before heat treatment, and the deformation was not shown great difference among three alloys after heat treatment and post-soldering. 2. In the frameworks for occlusal porcelain veneering, the precious alloy framework was greatest deformed and the deformation was not difference between semi-precious alloy framework and non-precious alloy framework before, after heat treatment, and the deformation was not shown great difference among three alloys after post soldering. 3. In the non-precious alloy frameworks for facial porcelain veneering and occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and conversely increased after post-soldering. 4. In the semi-precious alloy framework for facial porcelain veneering, the deformation was not detectable after heat treatment and increased after post-solder. And in the frame-work for occlusal porcelain veneering, the deformation was slightly decreased after heat treatment and increased after post-soldering. 5. In the precious alloy framework for facial porcelain veneering, the deformation was greatly decreased after heat treatment and increased after post-soldering, And in the framework for occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and decreased after post-soldering.

  • PDF

A STUDY ON SURFACE ROUGHNESS OF METALS ACCORDING TO FINISHING AND POLISHING PROCEDURES - AN ATOMIC FORCE MICROSCOPE ANALYSIS - (연마방법에 따른 금속의 활택도에 관한 연구 - Atomic Force Microscope를 이용한 -)

  • Park Won-Kyu;Woo Yi-Hyung;Choi Boo-Byung;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • The surface of metals should be as smooth as possible for optimum comfort, oral hygiene, low plaque retention, and resistance to corrosion. In this study five specimens of each precious metal(type III gold alloy, ceramic gold alloy, and Ag-Pd alloy) were divided into five groups according to finishing and polishing procedures : group 1(sandblaster), group 2(group 1+stone), group 3(group 2+brown rubber), group 4(group 3+green rubber), and group 5(group 4+rouge). Six specimens of each non-precious metal(Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy) were divided into six groups: group 1(sandblaster), group 2(group 1+hard stone), group 3(group 2+electrolytic polisher), group 4(group 3+brown hard rubber point), group 5(group 4+green hard rubber point), and group 6(group 5+rouge). Considering factors affecting the rate of abrasion, the same dentist applied each finishing and polishing procedure. In addition, the surface roughness of enamel, resin, and porcelain was evaluated. The effect of finishing and polishing procedures on surface roughness of precious and non-precious metals, enamel, resin, and porcelain was evaluated by means of Atomic Force Microscope(AutoProbe CP. Park Scientific Instruments, U.S.A.) that can image the three dimensional surface profile and measure average surface roughness values of each sample at the same time. The obtained results were as follows : 1. According to finishing and polishing procedures, the surface roughness of type III gold alloy, ceramic gold alloy, and Ag-Pd alloy was decreased in the order of group 1, 2, 3, 4, and 5 (P<0.01). 2. According to finishing and polishing procedures. the surface roughness of Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy was decreased in the order of group 1, 2, 3, 4, 5, and 6 (p<0.01). 3. There was not statistically significant difference in the surface roughness among three metals of precious metals in group 1 but was significant difference in group 2, 3, 4, and 5 (P<0.05). 4. There was not statistically significant difference in the surface roughness among three metals of non-precious metals in all groups. 5. When the surface roughness of the smoothest surface of each metal, enamel. porcelain, and resin was compared, porcelain was the smoothest and the surface roughness was decreased in the order of Ni-Cr alloy. Co-Cr alloy. Co-Cr-Ti alloy, resin. Ag-Pd alloy, ceramic gold alloy type III gold alloy, and enamel (P<0.01). The results of this study indicate that the finishing and polishing procedures should be carried out in a logical, systematic sequence of steps and the harder non-precious metals may be less resistance to abrasion than are the softer precious metals.

A Study on Shear Bond Strength of Heat Press Ceramic to Non Precious Porcelain Metal (도재용착용 비귀금속과 열가압성형도재의 전단결합강도 연구)

  • Kim, Seong-Soo;Kim, Wook-Tae;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Purpose: Heat pressed ceramics, used for all ceramic restorations, have the additional advantage of being technically less change through using of the lost-wax technique. Conceptually, combining the ceramic with the clinically proven reinforcing ability of a metal framework would be advantageous; however, cause of mismatching of fusion between ceramics and metal frameworks which from differences of casting temperature and coefficient of thermal expansion, pressed ceramics could not be used with a metal framework. The purpose of this study was to compare shear bond strength of press-to metal ceramic to porcelain fused non precious metal and feldspatic porcelain fused non precious metal. Methods: The 30 metal specimens were casted in a porcelain fused non precious metal nickel-chromium alloy. They were divided into 3 groups by surface treatment and applied ceramic: $125{\mu}m$ aluminium oxide sandblasting and veneered feldspatic porcelain (group FP), $125{\mu}m$ aluminium oxide sandblasting and had press-to-metal ceramic applied (group PC), porcelain bonder (gold bonder) fused on surface of metal specimens and had press-to-metal ceramic applied (group PCG). In each group 10 metal specimens were used. The press-to-metal ceramic applied 20 specimens had ash-free wax pattern applied, the metal-wax complexes invested, and were pressed with heat press ceramic. All specimens were subjected to shear bond strength test at a crosshead speed of 1.0 mm/min. Results: The results of measured in Mean SD and data were analyzed by one-way AVOVA (p= .05) and Tukey HSD test (p= .05).: group FP $16.090{\pm}1.841$ MPa, group PC $12.620{\pm}1.8256$ MPa, group PCG $10.920{\pm}0.9283$, significant differences between all groups (p < .05). Significant differences were found in each between group FP and group PC, group FP and group PCG (p < .05). Conclusion: The shear bond strength of press-to-metal ceramic to porcelain fused non precious metal was described higher in unused gold bonder group than used gold bonder groups.

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF

Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent (티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF

Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method (레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질)

  • Oh, Jung-Ran;Lee, Seok-Hyung;Woo, Yi-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

EFFECT OF TWO OPAQUING TECHNIQUES ON METAL-CERAMIC BOND STRENGTH (Opaque 도재의 도포 방법이 치과용 합금과 도재간의 결합 강도에 미치는 영향)

  • Jang, Il-Seong;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.475-488
    • /
    • 1996
  • The opaque porcelain layer of porcelain-fused-to-metal(PFM) restoration is critical for the success of PFM restoration because it is the first layer placed over the treated alloy. But, the methods of opaquing technique have not been confirmed. Usually, the one layer method and two layer method have been used for the application of opaque porcelain. In the past, alloys with porcelain veneers which have been used successfully have contained various precious metals. Recent increase in the cost of precious metals stimulates considerable interest in nonprecious alloys. Although nickel-chromium alloys and nickel-chromium-beryllium alloys have been widely used, the use of cobalt-chromium alloys would be gradually increased with elimination of any potential risk of nickel-related allergic responses and/or beryllium-related toxic responses. This investigation examined one- and two-layer opaque porcelain applications to determine the effect on the bond strength of titanium added cobalt-chromium metal ceramic alloy. Bond strength of Ceramco II porcelain to titanium added cobalt-chromium alloy(2Dentitan) and gold-platinum-palladium alloy(Degudent H) were evaluated by direct shear bond strength test with Instron universal testing machine. The results were as follows; 1. When the mean shear bond strength of each experimental group were compared in $0.25cm^2$ unit area, the titanium added cobalt-chromium alloy/two layer method exhibited the greatest strength(79.7kg), followed by titanium added cobalt-chromium alloy/one layer method(76.2kg), gold-platinum-palladium alloy/two layer method(71.4kg), gold-platinum-palladium alloy/one layer method(64.2kg). 2. No significant differences in bond strength were recorded between the two opaquing techniques for gold-platinum-palladium alloy and titanium added cobalt-chromium alloy. 3. No significant differences in bond strength were recorded between the gold-platinum-palladium alloy and the titanium added cobalt-chromium alloy.

  • PDF

Effect of universal primer on shear bond strength between resin cement and restorative materials (다용도 프라이머가 레진 시멘트와 수복재의 전단 결합 강도에 미치는 영향)

  • Kim, Na-Hong;Shim, June-Sung;Moon, Hong-Suk;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.112-118
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference in shear bonding strength between resin cements to dental materials when a universal primer (Monobond plus) was applied in place of a conventional primer. Materials and methods: Four groups of testing materials: gold alloy (Argedent Euro, n = 16), non precious metal (T-4, n = 20), zirconia (Cercon, n = 20) and glass ceramic (IPS e.max press, n = 20), were fabricated into discs, which were embedded in an acrylic resin matrix. The gold alloy specimens were airborne-particle abraded, 8 of the specimens were coated with Metal primer II, while the remaining 8 specimens were coated with Monobond plus. The non precious and zirconia specimen were airborne-particle abraded then, the control group received Alloy primer coating, while the other was coated with Monobond plus. Glass ceramic specimens were etched. 10 specimens were coated with Monobond-S and the remaining specimens were coated using Monobond plus. On top of the surface, Multilink N was polymerized in a disc shape. All of the specimens were thermal cycled before the shear bonding strength was measured. Statistical analysis was done with Two sample $t$-test or Mann-Whitney U test (${\alpha}$=.05). Results: There were no significant differences in bonding strength depending on the type of primer used in the gold alloy and glass ceramic groups ($P$>.05), however, the bonding strengths of resin cements to non precious metal and zirconia groups, were significantly higher when the alloy primer was used ($P$<.05). Conclusion: Within the limitations of this study, improvement of universal primers which can be applied to all types of restorations is recommended to precious metals and zirconia ceramics. But, the bond strengths of non precious metals and zirconia ceramics were significantly lower when compared to a 10-MDP primer. More research is needed to apply universal primers to all types of restorations.