• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.023 seconds

Development of Form to Improve the Productivity of PC Structure Connections -Focused on Apartment Buildings- (PC구조 접합부공사의 생산성 향상을 위한 거푸집 개발 -공동주택을 중심으로-)

  • Kim, Seon-Hyung;Lee, Won-Suk;Kim, Sun-Kuk;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.11-20
    • /
    • 2010
  • With the amendment to the Building Act in November of 2005 that offered incentives in terms of floor area ratio and number of stories to apartment buildings adopting the Rahmen structure to facilitate remodeling, the construction industry is paying more attention to PC structures. As connections between PC columns and beams require complex design, it is very difficult to install and remove forms. Since forms made of plywood for such connections are fabricated and installed on site, a significant amount of labor is required, and constructability is low. Furthermore, after concrete casting, the forms are removed in a state in which they cannot be recycled, which leads to a significant amount of construction waste. For this reason, a solution to address such issues needs to be studied. However, many researchers have focused only on the structural performance of PC structures in Korea and elsewhere, ignoring the need for research on the forms used in building PC structure connections. Therefore, this research aims to develop a form that can improve the productivity of PC structure connection construction, and compare it with conventional forms to highlight its contribution to gains in productivity and economic viability.

A Study on the Development of Construction Production Rates System for Estimating Proper Construction Expenses of Off-Site Construction (OSC) Based PC Structure Factory-Built Assembly (OSC기반 PC구조 공장제작 적정 공사비 산정을 위한 품셈체계 개발 연구)

  • Lee, Jeongwook;Lee, Hansoo;Lee, Chiho;Noh, Hyunseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.89-100
    • /
    • 2022
  • The development of the Construction Production Rates System for appropriate construction cost calculation has recently come to the fore as a means of invigorating OSC based PC structure which currently needs institutional frameworks. PC structure based construction expenses consist of the factory-built assembly, transportation and on-site installation. Recently, in the field of transportation and site installation, research on product structure development is being conducted, such as presenting the standard product calculation system reflecting the results of field survey for each subsidiary materials (Lee et al., 2021). On the other hand, there is no ongoing research on estimating construction expenses of Factory-built assembly. This study suggests Construction Production Rates System which can be used for PC subsidiary materials based Factory-built assembly cost estimations. For the research, work types for the construction procedures have been categorized, and the standard input manpower suitable for the corresponding work characteristics has been derived from analyzing the associated Construction Standard Production Rates for each work type. Also, as the research referred PC subsidiary materials (such as columns, beams, walls, and slab, as well as on-site installation) and the standard number of workforce based on work types, one can calculate direct labor cost, using what the research shows. In addition, it suggests that the size of individual subsidiary materials be the extra cost factor, by using the characteristics that productivity changes depending on the size(m3) of subsidiary materials. It is expected that the research can contribute to objectively verifying factory-built assembly cost through of PC structure, which currently relies on estimates.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Preliminary Study of Modulization Construction Method on Concrete Structure for High-rise Building (고층 콘크리트 구조물 모듈화 시공 시스템 기초연구)

  • Koh, Min-Hyeok;Cho, Chang-Yeon;Shin, Tae-Hong;Kwon, Soon-Wook;Kim, Yea-Sang;Chin, Sang-Yoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.334-339
    • /
    • 2008
  • Construction that over 70% of the structure consists of concrete gets bigger and higher gradually and the demand of that is increasing as well. However, it's not easy to supply young and skilled persons on construction site because of social avoidance phenomena about 3D occupation, so it causes serious problems like aging and shortage of technicians. To solve the problems, executives related to the construction field make a management effort in various ways such as construction period shortening, labor productivity improvement and good quality but recently, they have an increasing interest in the necessity of the modularization of the high-rise building and the automation of the engineering development for the strengthening of international competitive power as more active and long-term alternatives. Therefore, this study is to propose the roadmap in order to make lots of efforts in developing construction technologies of high-rise buildings by performing a foundation study, the strategy for 4-step research development, on modularized construction system of concrete structure of high-rise buildings through domestic and foreign preceding research analyses associated with optimal design modularization technique, module factory automation and assembly automation of modularized objects.

  • PDF

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 1 - Material Development and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 1 - 재료 개발 및 성능 검토)

  • Choi, Jin-Won;Kim, Young-Jun;You, Young-Jun;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • Recent studies on concrete floating structure development focused on connection system of concrete modules. Precast concrete modules are designed to be attached by prestressing in the water, exposing the structure to the loads from water and making the construction difficult. Therefore, a development of bond material became a key issue in successful connection of floating concrete modules. In this study, micro-silica mixed aqua epoxy (MSAE) is developed for the task. Existing primer aqua epoxy, originally used as a bond material for the retrofit of concrete structures using fiber reinforced polymers, is evaluated to find the optimum micro-silica added mix proportion. Micro-silica of 0~4 volume % was mixed in standard mixture of aqua epoxy. Then, the material property tests were performed to study the effect of micro-silica in aqua epoxy by controlling the epoxy silane proportion by 0, ${\pm}5$, ${\pm}10%$. The optimum mix design of MSAE was derived based on the test results. The MSAE was used to connect concrete module specimens with the epoxy thickness variation of 5, 10, and 20mm. Then, 3-point loading test was performed to verify the bond capacity of MSAE. The results show that MSAE improves the bond capacity of concrete module.

A study on the Composition of the Production Rates System to Prepare Standards for Calculating the Construction Cost of PC Structure Apartments Based on Off-Site Construction (OSC) (OSC 기반 PC구조 공동주택 공사비 산정기준 마련을 위한 품셈 체계 구성에 관한 연구)

  • Lee, Hansoo;Lee, Chiho;Lee, Jeongwook;Noh, Hyunseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.96-106
    • /
    • 2021
  • The PC structure based on the OSC (Off-Site Construction) is mentioned as a representative method of innovation in the construction industry that converts the existing construction environment from site-centered to factory production-transportation-site assembly. However, recent research on PC method has focused on improving the functions of subsidiary materials and improving the production system to increase productivity and institutional / policy R&D that can be universally applied to the life-cycle stage of ordering / design /construction is insufficient. In particular, the absence of standardized cost calculation standards makes it difficult to calculate and verify of objectified appropriate construction cost. So which is an obstacle to the activation of the PC method. In this study, the standards for construction costs of domestic and foreign PC method were surveyed and similar Construction Standard Production Rates were analyzed to confirm the product structure suitable for PC method. Subsequently, the construction procedures and input resources for each PC subsidiary materials were identified through on-site surveys to derive component for subsidiary materials, and the factors of change in the product according to the construction characteristics(height, weight of subsidiary material) were verified. As a result the standard product calculation system suitable for the site installation of the PC method for apartment was presented.

A Study on the Structural Behavior and Safety Evaluation based on Field Measurement Value of Launching Truss (런칭 트러스의 안전성 평가 및 실측치에 기초한 구조거동에 관한 연구)

  • Park, Young Hoon;Lee, Seung Yong;Jeon, Jun Chang;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.383-391
    • /
    • 1998
  • Launching truss used for constructing the precast segmental concrete bridge has upper chord, lower chord and diagonal members. And the pin is used for connecting these members. From the field loading test carried out for investigating the actual behavior of launching truss, the great difference is analyzed between measured stress and calculated stress. Based on measured value, the structural analysis are carried out about assumed abnormal behavior of connection part. From the results of analysis, it is analyzed that the abnormal behavior of connection part greatly affect the structural behavior of launching truss. In addition, from the investigation of safety of launching truss, it is evaluated that the launching truss has enough safety with normal behavior of connection part.

  • PDF

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Characteristic of Cementitious Mortar Using High Volume of Recycled Fine Aggregate (순환잔골재의 다량 사용에 따른 모르타르의 특성)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • As for a possibility of using high volume of recycled aggregate in concrete mixture, recycled fine one which is known to be worse in quality and hard to control was selected and investigated in terms of performance of mortar as the replacement ratio to natural fine aggregate was changed. As a result of test, it is found that grade of recycled fine aggregate was beyond standard one and fineness modulus of that itself was increased in compare to natural one. In case of making mortar with recycled fine aggregate, disadvantageous results such as less fluidity and air content including the increase of dry shrinkage were shown but strengths of mortar were comparable to the one making with natural aggregate, which means that planned strength of common concrete structure can be achieved by controlling W/C and the amount of chemical admixture, and also that large amount of recycled fine aggregate is applicable to the precast concrete products generally free to the amount of water.

Design of a Smart Safety Measurement System Using Bluetooth Beacon Sensor Nodes (블루투스 비콘 센서 노드를 활용한 스마트 안전 계측 시스템 설계)

  • Park, Young-soo;Park, Chang-jin;Cho, Sun-hee;Park, Kyoung-yong;Kim, Min-sun;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.126-131
    • /
    • 2017
  • This paper designs a smart safety measurement system with Bluetooth beacon sensor nodes that can provide risk detection and evacuation/countermeasure services. The Bluetooth beacon sensor nodes is easily able to be attached to old building wall or construction or civil structure with potential danger. The proposed smart safety measurement system transmits various sensor data such as acceleration, gyroscope, geomagnetic, pressure, altitude, temperature, humidity at the spot where Bluetooth beacon sensor nodes are installed, and we can use them for risk perception, prediction, and warning services. To verify the effectiveness of the proposed system, we performed filed tests which showed that measured displacement values of precast retaining walls were within the permitted displacement value of 38.5 mm.