• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.026 seconds

Introducing a precast moment resistant beam-to-column concrete connection comparable with in-situ one

  • Esmaeili, Jamshid;Ahooghalandary, Neyram
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.203-215
    • /
    • 2019
  • Precast reinforced concrete structure (PRCS) consists of prefabricated members assembled at worksites and has more connections limitations in comparison with the equivalent in-situ reinforced concrete structure (IRCS). As a result of these limitations, PRCSs have less ductility in comparison with IRCSs. Recent studies indicate that the most noticeable failure in PRCSs have occurred in their connection zone. The objective of this study is introducing a type of precast beam-to-column connection (PBC) which in spite of being simple is of the same efficiency and performance as in-situ beam-to-column connection (IBC). To achieve this, the performance of proposed new PBC at exterior joint of a four story PRCS was analyzed by pseudo dynamic analysis and compared with that of IBC in equivalent IRCS. Results indicated that the proposed connection has even better performance in terms of strength, energy dissipation and stiffness, than that of IBC.

Verification of diaphragm seismic design factors for precast concrete parking structures

  • Zhang, Dichuan;Fleischman, Robert
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.643-656
    • /
    • 2019
  • A new seismic design methodology was proposed for precast concrete diaphragms. This methodology adopts seismic design factors applied on top of current diaphragm design forces. These factors are aimed to produce diaphragm design strengths aligned with different seismic performance targets. These factors were established through extensive parametric studies. These studies used a simple evaluation structure with a single-bay rectangular diaphragm. The simple evaluation structure is suitable for establishment of the design factors over comprehensive structural geometry and design parameters. However, the application of the design factors to prototype structures with realistic layouts requires further verification and investigation. This paper presents diaphragm design of several precast concrete parking structures using the new design methodology and verification of the design factor through nonlinear dynamic time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete parking structures. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete parking structures.

Verification of diaphragm seismic design factors for precast concrete office buildings

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.13-27
    • /
    • 2021
  • A new seismic design methodology has been developed for precast concrete diaphragms. Seismic design factors were used to be applied on top of diaphragm seismic design forces in the current code. These factors, established through extensive parametric studies, align diaphragm design strengths with different seismic performance targets. A simplified evaluation structure with a single-bay plan was used in the parametric studies. This simplified evaluation structure is reasonable and cost-effective as it can comprehensively cover structural geometries and design parameters. However, further verification and investigation are required to apply these design factors to prototype structures with realistic layouts. This paper presents diaphragm design of several precast concrete office buildings using the new design methodology. The applicability of the design factor to the office building was evaluated and verified through nonlinear time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete office buildings. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete office buildings.

Jacking Force and Camber for Precast Concrete Slab Reinforcing (프리캐스트 콘크리트 슬래브 보강을 위한 잭킹력과 솟음)

  • Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.43-48
    • /
    • 2021
  • Precast concrete can be used to reduce construction period and enhance construct ability. However structural problems could be occurred due to the wrong application of boundary condition and misunderstanding of structural behavior in the process of segmentation of original structure system. I experienced a serious deflections and cracks due to the increase of bending moment and creep after the construction of precast concrete slab, and we learned that this is from the misunderstanding of support conditions and structure behaviors of precast slab panel. Two support columns under the precast slab are inserted to reduce the bending moment, and the camber according to jacking force should be estimated for the structural safety during the reinforcing work. A proper support condition and the flexural stiffness of precast concrete slab were applied to check the deflection and crack for existing structure by inverse analysis, and we can estimate the camber according to jacking force of the precast concrete slab, and suggest a method to make safe structure.

An Experimental Study on the Behavior of Precast Concrete Shear Keys (프리캐스트 콘크리트 전단키의 역학적 거동에 관한 실험연구)

  • 오병환;이준서;이형준;임동환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.86-89
    • /
    • 1992
  • In the precast segmental method of construction, segments of a structure are precast, assembled, and tied together by post-tensioning to form the structure. Shear strength and behavior of points in precast concrete structures are important problems in the design of these structures. An experimental program was set up study the shear behavior of precast concrete shear keys. experimental models of keyed joints include a single key, representing one of a series include the shear key shape, d/h ratio(1/4, 1/5, 1/7), and inclined angle (45。 60。 75。). Two different types of joints, i.e., epoxied joint and dry joints were studied. From the present tests, it is found that epoxied joints have higher shear strength than those of dry joints, and that high d/h ratio keys have higher shear strength than those of low d/h ratio keys. The keys with 60。-inclined angle shows the highest shear strength among various angles.

  • PDF

Seismic design of a precast r.c. structure equipped with viscous dampers

  • Silvestri, Stefano;Gasparini, Giada;Trombetti, Tomaso
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.297-321
    • /
    • 2011
  • The seismic design of a two-storey precast reinforced-concrete building structure equipped with viscous dampers is presented in this paper with twofold purpose. The first goal is to verify the applicability of a practical procedure for the identification of the mechanical characteristics of the viscous dampers which allow to achieve target performance levels, originally proposed by the authors for moment-resisting building frames, also with reference to "pendular" structures. The second goal is to investigate the effectiveness of the use of viscous dampers (as compared with traditional lateral-resisting stiff braces) for the seismic design of precast not moment-resisting concrete structures.

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels

  • Lago, Bruno Dal
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.81-95
    • /
    • 2019
  • The unexpected seismic interaction of dry-assembled precast concrete frame structures typical of the European heritage with their precast cladding panels brought to extensive failures of the panels during recent earthquakes due to the inadequateness of their connection systems. Following this recognition, an experimental campaign of cyclic and pseudo-dynamic tests has been performed at ELSA laboratory of the Joint Research Centre of the European Commission on a full-scale prototype of precast structure with vertical and horizontal cladding panels within the framework of the Safecladding project. The panels were connected to the frame structure by means of innovative arrangements of fastening systems including isostatic, integrated and dissipative. Many of the investigated configurations involved a strong frame-cladding interaction, modifying the structural behaviour of the frame turning it into highly non-linear since small deformation. In such cases, properly modelling the connections becomes fundamental in the framework of a design by non-linear dynamic analysis. This paper presents the peculiarities of the numerical models of precast frame structures equipped with the various cladding connection systems which have been set to predict and simulate the experimental results from pseudo-dynamic tests. The comparison allows to validate the structural models and to derive recommendations for a proper modelling of the different types of existing and innovative cladding connection systems.

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.