DOI QR코드

DOI QR Code

Seismic design of a precast r.c. structure equipped with viscous dampers

  • Received : 2010.11.25
  • Accepted : 2011.01.27
  • Published : 2011.09.25

Abstract

The seismic design of a two-storey precast reinforced-concrete building structure equipped with viscous dampers is presented in this paper with twofold purpose. The first goal is to verify the applicability of a practical procedure for the identification of the mechanical characteristics of the viscous dampers which allow to achieve target performance levels, originally proposed by the authors for moment-resisting building frames, also with reference to "pendular" structures. The second goal is to investigate the effectiveness of the use of viscous dampers (as compared with traditional lateral-resisting stiff braces) for the seismic design of precast not moment-resisting concrete structures.

Keywords

References

  1. Aydin, E., Boduroglub, M.H. and Guney, D. (2007), "Optimal damper distribution for seismic rehabilitation of planar building structures", Eng. Struct., 29, 176-185. https://doi.org/10.1016/j.engstruct.2006.04.016
  2. Bommer, J.J., Elnashai, A.S. and Weir, A.G. (2000), "Compatible acceleration and displacement spectra for seismic design codes", Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
  3. Building Seismic Safety Council of the National Institute of Building Sciences (2003), NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Washington, D.C.
  4. Cardone, D., Dolce, M. and Rivelli, M. (2007), "Fattori riduttivi per spettri elastici ad alto smorzamento", Proc. of the 12th Italian Conference on Earthquake Engineering, ANIDIS 2007, Pisa, Italy, Paper No. 332.
  5. Christopoulos, C. and Filiatrault, A. (2006), Principles of passive supplemental damping and seismic isolation, IUSS Press, Pavia, Italy.
  6. Cimellaro, G.P. (2007), "Simultaneous stiffness-damping optimization of structures with respect to acceleration, displacement and base shear", Eng. Struct., 29, 2853-2870. https://doi.org/10.1016/j.engstruct.2007.01.001
  7. Cimellaro, G.P. and Retamales, R. (2007), "Optimal softening and damping design for buildings", Struct. Control Health Monit., 14(6), 831-857. https://doi.org/10.1002/stc.181
  8. Constantinou, M.C. and Tadjbakhsh, I.G. (1983), "Optimum design of a first story damping system", Comput. Struct., 17(2), 305-310. https://doi.org/10.1016/0045-7949(83)90019-6
  9. Constantinuou, M.C., Soong, T.T. and Dargush, G.F. (1998), Passive energy dissipation systems for structural design and retrofit, Monograph No. 1, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
  10. De Silva, C.W. (1981), "An algorithm for the optimal design of passive vibration controllers for flexible systems", J. Sound Vib., 75(4), 495-502. https://doi.org/10.1016/0022-460X(81)90437-5
  11. Drusiani, E. (2010), Dissertation: "Studio sismico del fattore di struttura da applicare a edifici a elevato smorzamento", supervisors: Trombetti, T. and Silvestri, S., University of Bologna, Italy. http://amslaurea.cib.unibo.it/1028/
  12. Eurocode 8 (2003), Design of structures for earthquake resistance - Part 1: general rules, seismic actions and rules for buildings, European Standard, prEN 1998-1, December 2003.
  13. Fujita, K., Moustafa, A. and Takewaki, I. (2010), "Optimal placement of viscoelastic dampers and supporting members under variable critical excitations", Earthq. Struct., 1(1), 43-67. https://doi.org/10.12989/eas.2010.1.1.043
  14. Fujita, K., Yamamoto, K. and Takewaki, I. (2010), "An evolutionary algorithm for optimal damper placement to minimize interstorey-drift transfer function in shear building", Earthq. Struct., 1(3), 289-306. https://doi.org/10.12989/eas.2010.1.3.289
  15. Garcia, D.L. and Soong, T.T. (2002), "Efficiency of a simple approach to damper allocation in MDOF structures", J. Struct. Control, 9(1), 19-30. https://doi.org/10.1002/stc.3
  16. Garcia, D.L. (2001), "A simple method for the design of optimal damper configurations in MDOF structures", Earthq. Spectra, 17(3), 387-398. https://doi.org/10.1193/1.1586180
  17. Gluck, N., Reinhorn, A.M., Gluck, J. and Levy, R. (1996), "Design of supplemental dampers for control for structures", J. Struct. Eng., 122(12), 1394-1399. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1394)
  18. Gurgoze, M. and Muller, P.C. (1992), "Optimal positioning of dampers in multi-body systems", J. Sound Vib., 158(3), 517-530. https://doi.org/10.1016/0022-460X(92)90422-T
  19. Hahn, G.D. and Sathiavageeswaran, K.R. (1992), "Effects of added-damper distribution on the seismic response of buildings", Comput. Struct., 43(5), 941-950. https://doi.org/10.1016/0045-7949(92)90308-M
  20. Hart, G.C. and Wong, K. (2000), Structural dynamics for structural engineers, John Wiley & Sons, New York.
  21. http://nisee.berkeley.edu/prosys/applications.html
  22. http://www.alga.it/
  23. http://www.arup.com/dyna/applications/seismic/seismic.htm
  24. http://www.fip-group.it/fip_ind_eng/index_fip.html
  25. http://www.taylordevices.com
  26. Italian SSN (Servizio Sismico Nazionale), Presidenza del Consiglio Superiore dei Lavori Pubblici - Servizio Tecnico Centrale (1998), Linee guida italiane per la progettazione, esecuzione e collaudo di strutture isolate, Roma, Italy.
  27. Kawashima, K. and Aizawa, K. (1986), "Modification of earthquake response spectra with respect to damping ratio", Proc. Of the 3rd US National Conference on Earthquake Engineering, Vol. II, Charleston, South Carolina.
  28. Lavan, O. and Levy, R. (2006a), "Optimal design of supplemental viscous dampers for linear framed structures", Earthq. Eng. Struct. Dyn., 35(3), 337-356. https://doi.org/10.1002/eqe.524
  29. Lavan, O. and Levy, R. (2006b), "Optimal peripheral drift control of 3D irregular framed structures using supplemental viscous dampers", J. Earthq. Eng., 10(6), 903-923.
  30. Lavan, O. and Levy, R. (2010), "Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping", Earthq. Struct., 1(3), 307-326. https://doi.org/10.12989/eas.2010.1.3.307
  31. Levy, R. and Lavan, O. (2006), "Fully stressed design of passive controllers in framed structures for seismic loadings", Struct. Multidiscip. O., 32(6), 485-498. https://doi.org/10.1007/s00158-005-0558-5
  32. Liu, W., Tong, M. and Lee, G. (2005), "Optimization methodology for damper configuration based on building performance indices", J. Struct. Eng. - ASCE, 131(11), 1746-1756. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1746)
  33. Priestley, M.J.N. (2003), Myths and fallacies in earthquake engineering, Revisited, IUSS Press, Pavia, Italy.
  34. Shukla, A.K. and Datta, T. K. (1999), "Optimal use of viscoelastic dampers in building frames for seismic force", J. Struct. Eng. 125(4), 401-409. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(401)
  35. Silvestri, S. and Trombetti, T. (2007), ''Physical and numerical approaches for the optimal insertion of seismic viscous dampers in shear-type structures'', J. Earthq. Eng. 11(5), 787-828. https://doi.org/10.1080/13632460601034155
  36. Silvestri, S., Gasparini, G. and Trombetti, T. (2010), "A five-step procedure for the dimensioning of viscous dampers to be inserted in building structures", J. Earthq. Eng., 14(3), 417-447. DOI: 10.1080/13632460903093891, http://dx.doi.org/10.1080/13632460903093891
  37. Silvestri, S., Trombetti, T. and Ceccoli, C. (2003), ''Inserting the mass proportional damping (MPD) system in a concrete shear-type structure'', Struct. Eng. Mech., 16(2), 177-193. https://doi.org/10.12989/sem.2003.16.2.177
  38. Singh, M.P. and Moreschi, L.M. (2001), "Optimal seismic response control with dampers", Earthq. Eng. Struct. Dyn., 30(4), 553-572. https://doi.org/10.1002/eqe.23
  39. Singh, M.P. and Moreschi, L.M. (2002), "Optimal placement of dampers for passive response control", Earthq. Eng. Struct. Dyn., 31(4), 955-976. https://doi.org/10.1002/eqe.132
  40. Soong, T.T. and Dargush, G.F. (1997), Passive energy dissipation systems in structural engineering, John Wiley & Sons, Baffins Lane, Chichester, West Sussex PO19 1UD, England.
  41. Takewaki, I. (1997), "Optimal damper placement for minimum transfer functions", Earthq. Eng. Struct. Dyn., 26, 1113-1124. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X
  42. Takewaki, I. (2000), "Optimal damper placement for critical excitation", Probabilist. Eng. Mech., 15, 317-325. https://doi.org/10.1016/S0266-8920(99)00033-8
  43. Takewaki, I. (2009), Building control with passive dampers: optimal performance-based design for earthquakes, John Wiley & Sons (Asia), Singapore.
  44. Tolis, S.V. and Faccioli, E. (1999), "Displacement design spectra", J. Earthq. Eng., 3(1), 107-125.
  45. Trombetti, T. and Silvestri, S. (2004), "Added viscous dampers in shear-type structures: the effectiveness of mass proportional damping", J. Earthq. Eng., 8(2), 275-313.
  46. Trombetti, T. and Silvestri, S. (2006), ''On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems'', J. Sound Vib., 292(2), 21-58. https://doi.org/10.1016/j.jsv.2005.07.023
  47. Trombetti, T. and Silvestri, S. (2007), ''Novel schemes for inserting seismic dampers in shear-type systems based upon the mass proportional component of the Rayleigh damping matrix'', J. Sound Vib., 302(3), 486-526. https://doi.org/10.1016/j.jsv.2006.11.030
  48. Uetani, K., Tsuji, M. and Takewaki, I. (2003), "Application of optimum design method to practical building frames with viscous dampers and hysteretic dampers", Eng. Struct., 25(5), 579-592. https://doi.org/10.1016/S0141-0296(02)00168-2
  49. Zhang, R.H. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng. - ASCE, 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375)

Cited by

  1. Application of a Direct Procedure for the Seismic Retrofit of a R/C School Building Equipped with Viscous Dampers vol.1, 2015, https://doi.org/10.3389/fbuil.2015.00014
  2. A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio vol.5, pp.1, 2013, https://doi.org/10.12989/eas.2013.5.1.083
  3. Cyclic loading tests for precast concrete cantilever walls with C-type connections vol.7, pp.5, 2014, https://doi.org/10.12989/eas.2014.7.5.753
  4. Seismic retrofit of special truss moment frames using viscous dampers vol.123, 2016, https://doi.org/10.1016/j.jcsr.2016.04.027
  5. Peak velocities estimation for a direct five-step design procedure of inter-storey viscous dampers vol.14, pp.2, 2016, https://doi.org/10.1007/s10518-015-9829-8
  6. A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers vol.44, pp.5, 2011, https://doi.org/10.12989/sem.2012.44.5.611
  7. Telescopic columns as a new base isolation system for vibration control of high-rise buildings vol.3, pp.6, 2011, https://doi.org/10.12989/eas.2012.3.6.853
  8. Performance evaluation of a seismic retrofitted R.C. precast industrial building vol.12, pp.1, 2017, https://doi.org/10.12989/eas.2017.12.1.013
  9. Comparison of different distributions of viscous damper properties in asymmetric-plan frames vol.18, pp.2, 2020, https://doi.org/10.12989/eas.2020.18.2.233
  10. Seismic Performance of the Inerter and Negative Stiffness-Based Dampers for Vibration Control of Structures vol.7, pp.None, 2021, https://doi.org/10.3389/fbuil.2021.773622