• Title/Summary/Keyword: precast structure

Search Result 246, Processing Time 0.024 seconds

A Basic Research for Algorithms of Form Quantity Survey of Green Frame (그린프레임의 거푸집 물량산출 알고리즘 기초연구)

  • Kim, Taekoo;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.193-194
    • /
    • 2014
  • Green Frame is a building frame system composed of precast concrete columns and beams. For the construction to run smoothly, the quantity of frames should be estimated in the planning phase and a plan on production of members should be established in connection with the overall work plan. The algorithm for calculation of the amount of forms used in Green Frame automatically estimates the quantity of forms using the design structure prepared in the design phase. The number and area of forms are calculated using the member size drawn from the structure design. Based on the quantity calculated, the type and area per form size are estimated to be used in preparing BOQ (Bill of Quantity). Thus, the time required for architectural planning and design can be shortened when the algorithm for calculation of the amount of forms is applied. This study is on the basic research of calculating the quantity of forms using the structure design and of the algorithm for calculation of the amount of forms used for production of composite PC members.

  • PDF

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : II. Experimental Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파 병행기법 : II. 실험적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.271-283
    • /
    • 2002
  • P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects in Impact-Echo(IE) method. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. In numerical studies(Part I), it was verified that P-wave velocities could be obtained from SASW. In this paper(Part II), experimental studies were made in slab type concrete model specimens in which voids and waterproof sheet were included at the known locations. Accordingly, the feasibility of the proposed method was evaluated. The IE-SASW method was also performed in the precast model tunnel on ground and open-cut tunnel in ground. SASW tests were performed to determine the P-wave velocity of the concrete and then IE tests were carried at regularly spaced points along the testing lines to determine the thickness of structures. The nondestructive testing method which combined SASW and IE tests showed the great potential in the field applications.

Effect of Joint Reinforcement on Reinforced Concrete Pile by Centrifugal Casting (원심성형 철근콘크리트 말뚝 이음부의 보강 효과)

  • Joo, Sanghoon;Hwang, Hoonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.501-509
    • /
    • 2019
  • The construction of foundation piles for buildings and bridges is changing from pile driving to an injected precast pile method. The goal is to minimize environmental damage, noise pollution, and complaints from neighboring residents. However, it is necessary to develop economic piles that are optimized for precasting by a centrifugal method in terms of both the material and structural system. A reinforced joint method is proposed for reinforced concrete piles (RC piles) manufactured by centrifugal casting. A previous study concluded that the structural performance of the current joint system for RC piles could be improved by using a reinforced joint composed of extended circular band plates and studs. In this study, the structural performance of such a joint was validated experimentally by bending and shear strength measurements. The proposed joint reinforcement method showed adequate structural performance in terms of bending and shear strength. The overall load-deflection behavior is close to that of a structure without joints, so it is expected that the behavior and performance of the design can be reliably reflected in site structures.

Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP (GFRP로 보강된 순환골재콘크리트 블록의 성능평가)

  • Kim, Yongjae;Lee, Hyeongi;Park, Cheolwoo;Sim, Jongsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6565-6574
    • /
    • 2013
  • Precast concrete blocks are used mainly for score protection, slope protection and riverbed structure protection, etc. Because these concrete blocks are exposed to water or wetting environments, the steel rebar used as reinforcements in concrete blocks can corrode easily. Corrosion of the steel rebar tends to reduce the performance and service life of the concrete blocks. In this study, Glass Fiber Reinforced Polymer(GFRP) rebar, which does not corrode, was applied instead of a steel rebar to prevent performance degradation of the blocks. Recycled concrete aggregate and high early strength cement(HESC) were used in the concrete mix for field applicability. The experiment results showed that the workability and form removal strength of the recycled aggregate concrete using HESC showed comparable results to normal concrete and the compressive strength at 28 days increased by about 18% compared to normal concrete. The load resistance capacity of the recycled aggregate concrete blocks reinforced with a GFRP rebar increased by approximately 10~30% compared to common concrete block.

A Case Study on Construction of Front-Jacking method in Daejeon E.W. perforate Road Project (대전 동서관통도로 Front-Jacking공법 시공사례)

  • Kim Yong-Il;Hwang Nak-Yeon;Cha Jong-Whi;Jang Sung-Wook;Lee Nai-Yong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.646-654
    • /
    • 2005
  • The crossing construction under railroad have two methods which are cut and cover and trenchless method. First, cut and cover method is an extremely limited method concerning non-running time. Whereas, trenchless method is free from restriction such as train speed and running time, and has the strong points of safe and rapid construction. Front Jacking method, one of the trenchless methods, is frequently applied recently due to its stability during construction and vantage of assuring schedule reliability. The procedure is that after minimizing interlocking friction with structure and earth pressure due to jacking the small steel tube, pulling the precast box manufactured at the field in the ground using PC strand and hydraulic Jack. This method is able to be applied regardless of section size and length of box and condition of soil. And that is also pro-environmental. This paper presents the case of Daejeon E. W. perforate Road Project applied with the Front Jacking method.

  • PDF

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.

Flexural Behavior of MRS Continuous Joints for the Prestressed Concrete One-way Joist Slab System (프리스트레스 콘크리트 일방향 장선구조로 구축한 MRS 연속단 접합부의 휨거동)

  • Oh, Young-Hun;Moon, Jeong-Ho;Im, Ju-Hyeuk;Choi, Dong-Sup;Lee, Kang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.148-155
    • /
    • 2010
  • The purpose of this study is to propose and evaluate the continuous joint constructed with MRS system which is utilized for floor system in the parking structures or commercial retail buildings. Four specimens were fabricated and tested to examine the structural performance of the continuous joint with different joint detailing. Structural test for the specimens was undertaken to simulate the actual stress condition of the negative moment resisting connection in the prestressed precast concrete parking structures with 8m span. Based on the experimental results, the MRS system could be designed as the ductile continuous joint governed by flexural behavior. Therefore the MRS system developed in this study would provide a superior joint behavior to conventional double-tee system when constructing monolithic joint composed of simply supported precast members.

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Experimental Study on RC Frame Structures with Non-Seismic Details Strengthened by Externally-Anchored Precast Wall-Panel Method (EPWM) (외부 앵커압착형 프리캐스트 벽체로 보강된 비내진 상세를 갖는 철근콘크리트 골조에 대한 실험적 연구)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Kwon, Yong-Keun;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • The infill-wall strengthening method has been widely used for the seismic performance enhancement of the conventional reinforced concrete (RC) frame structures with non-seismic detail, which is one of the promising techniques to secure the high resisting capacity against lateral forces induced by earthquake. During the application of the infill-wall strengthening method, however, it often restricts the use of the structure. In addition, it is difficult to cast the connection part between the wall and the frame, and also difficult to ensure the shear resistance performances along the connection. In this study, an advanced strengthening method using the externally-anchored precast wall-panel (EPCW) was proposed to overcome the disadvantages of the conventional infill-wall strengthening method. The one-third scaled four RC frame specimens were fabricated, and the cyclic loading tests were conducted to verify the EPCW strengthening method. The test results showed that the strength, lateral stiffness, energy dissipation capacity of the RC frame structures strengthened by the proposed EPCW method were significantly improved compared to the control test specimen.