• 제목/요약/키워드: precast steel reinforced concrete beam

검색결과 34건 처리시간 0.021초

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석 (Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel)

  • 유승룡;주호성;손국원
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가 (Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading)

  • 최현기;유창희;최윤철;최창식
    • 콘크리트학회논문집
    • /
    • 제22권3호
    • /
    • pp.325-333
    • /
    • 2010
  • 이 연구에서는 시공성과 경제성이 향상되고 중진 지역에서 사용할 수 있는 새로운 프리캐스트 콘크리트 보-기둥 접합부 상세를 복합구조로 개발하고 실험을 통하여 이를 검증하였다. 이 상세는 기둥 속에 매립된 각형강관과 보U형 단부를 갖는 보 단부에 매립된 플레이트를 볼트로 결합시킬 수 있는 구조로 되어있다. 하이브리드 스틸-콘크리트 접합합부에 앞서 콘크리트가 조기에 파괴되는 것을 막기 위하여 접합부 부분에 ECC(engineered cementitious composite)를 사용하였다. 개발된 접합부 상세에 대한 성능을 검증하기 위하여 보-기둥 접합부 실험체를 계획하여 이에 대한 내진성능 실험을 실시하였다. 내부 접합부에 있어서는 접합부 횡보강근 유무와 현장타성 범위를 변수로 3개의 실험체를 제작하였다. 실험은 기둥에 일정 축력을 가한 상태에서 PC기둥 단부에 액츄에이터를 설치하여 변위제어로써 반복가력 하여 실시하였다. 실험에서 얻은 자료를 접합부 내력, 강성, 에너지 소산능력 등에 대하여 분석하였으며, 그 결과 이 연구에서 제시한 새로운 보-기둥 접합부 상세는 강재와 콘크리트 그리고 ECC 사이에서의 다른 부착 특성 때문에 구조거동에서 차이점이 관찰되었으며, 기준 실험체를 제외한 두 실험체의 경우 ECC 및 철골연결재에 의해 소성힌지를 유도할 수 있는 것으로 나타났다. 그리고 프리캐스트 접합부는 높은 일체성과 모멘트 저항 능력을 보이며 중진 지역에서 사용가능함을 보였다.

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

PC 기둥-H형강보의 볼트접합부에관한 실험적 연구III (An Experimental Study III on the Bolted Connection between H-Beam and Precast-Concrete Column)

  • 여인석;박순규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.307-310
    • /
    • 2005
  • The PCS system, which consists of precast concrete column and steel beam, has been under development. Experimental test has been carried out to investigate the structural performance of the system under earthquake. Two types of test specimens of beam-column joints are designed in order to compare the performances. One is the system with reinforced concrete slab and the other is without slab. It is found that the system with slab could satisfy all of the requirements from ACI Criteria such as strength, stiffness degradation and energy dissipation capacity except initial stiffness. It is also investigated that the stiffness of the joint is belong to rigid joint type according to Bjorhovde criterion. And it is observed that the partial-composite system between beam and slab is more effective than full-composite system in the respect of the energy dissipation capacity of the system.

  • PDF

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도 (Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams)

  • 김철구;박홍근;홍건호;강수민
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.501-510
    • /
    • 2015
  • 최근 프리캐스트 콘크리트에 현장타설 콘크리트를 타설하는 복합화 공법의 사용이 증가하고 있다. 강섬유 콘크리트는 습식공법에서는 시공성 문제로 적용이 어렵지만, 공장에서 선 제작이 이뤄지는 프리캐스트 부재에는 충분히 사용 가능하다. 강섬유 콘크리트가 복합화 공법에 사용되면 서로 재료적 특성이 다른 강섬유 콘크리트와 일반 콘크리트 합성단면의 전단강도 산정법이 문제가 되고 있다. 하지만 현행 기준은 명확한 기준을 제시하지 못하고 있는 실정이다. 따라서 강섬유 콘크리트가 사용된 합성 부재의 전단강도 실험을 통해 강섬유 콘크리트가 합성단면의 전단강도에 미치는 영향을 살펴보았다. 실험 변수로는 합성단면적비와 전단철근비를 고려하였다. 실험결과를 살펴보면, 강섬유가 인장대에 보강된 경우 강섬유 보강 단면적에 비례하여 전단강도가 증가하였다. 하지만 강섬유의 영향으로 인해 계면에서 수평전단파괴가 쉽게 발생하기 때문에 최소 수평전단철근이 반드시 필요하다.

L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석 (Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel)

  • 유승룡;주호성;하수경
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

공동주택 적용을 위한 친환경 라멘구조 접합부 개발 (Development of Beam-Column Connection for Green Rhamen Structural Apartment)

  • 윤태호;홍원기;박선치;윤대영
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.159-165
    • /
    • 2010
  • The composite frame system suggested in this paper consists of steel reinforced concrete beam encased with structural tee and precast concrete column. This system has advantages such as reduction of materials, CO2 emissions and waste. To commercialize the new composite frame system, it is necessary to develop connections that can effectively connect each member. Therefore, a hybrid connection that has steel type connection and reinforced concrete together is utilized to connect easily at the composite frame system. To evaluate the structural performance of the composite frame system, an experimental investigation is presented. In this study, the flexural moment capacity of the composite frame was determined using the strain compatibility approach. The strain compatibility approach can be used to predict the flexural moment capacity at each limit state. As a result, all elements of the beam to column connection are represented to fully interact between each other. The specimens show errors of -1.9% in the yield limit state and 0.9% at the maximum load limit state. Also, testing shows that beam to column connections have characteristics of semi-rigid connection as per Eurocode 3.

장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발 (Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building)

  • 윤태호;홍원기;박선치;윤대영
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.