• 제목/요약/키워드: precast RC

Search Result 109, Processing Time 0.032 seconds

Safety and Economic Analysis by Applying HI-BEAM Technology (HI-BEAM 공법 적용 시 안전성 및 경제성 분석 연구)

  • Kim, sul min;Son, Kiyoung
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Hybrid & Integrated Beam (HI-BEAM), one of the composite systems, appears to have the advantage of high rigidity of reinforced concrete structures and long span of steel structures. In addition, because HI-BEAM makes the ends of beams from reinforced concrete, it is able to construct ideal composite construction method for effectively joining with reinforced concrete columns and can produce high-quality concrete structures without completing them in the field. Existing studies on the HI-BEAM method are mostly studies on structural aspects or epidemiological characteristics, or studies on the productivity and cost analysis of different structures through case studies, and analysis of actual construction methods is based on actual construction sites. In this study, the economic feasibility of the HI-BEAM method is verified by comparing the productivity and construction costs of the RC-BEAM method (RC-BEAM) method and the HI-BEAM method.

Design of buckling restrained braces with composite technique

  • Ozcelik, Ramazan;Dikiciasik, Yagmur;Civelek, Kazim B.;Erdil, Elif F.;Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.687-699
    • /
    • 2020
  • This paper focus on the buckling restrained braces (BRBs) with new casing members (CMs). Seven BRBs with CMs consisting of precast concrete modules (PCMs) were tested to investigate the effects of CMs on the cyclic performance of BRBs. The PCMs consisted of plain and reinforced concrete casted into wooden or steel molds than they were located on the core plate (CP) via bolts. There were 14 or 18 PCMs on the CP for each BRBs. The technique of the PCMs for the CM provides that the BRBs can be constructed inside the steel or reinforced concrete (RC) structures. In this way, their applications may be rapid and practical during the application of the retrofitting. The test results indicated that the cyclic performance of the BRBs was dominated by the connection strength and confinement of the PCMs. The BRBs with PCMs wrapped with fiber reinforced polymers (FRPs) sustained stable hysteretic performance up to a CP strain of 2.0 %. This indicates that the new designed BRBs with PCMs were found to be acceptable in terms of cyclic performance. Furthermore, the connection details, isolation materials and their application techniques have been also investigated for the improved BRB design in this study.

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 2 - Structural Application and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 2 - 구조 접합 성능 평가)

  • Choi, Jin-Won;You, Young-Jun;Jeong, Youn-Ju;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Recent studies to develop Very Large Floating Structure(VLFS) has shown that the construction procedure of the structure needs to acquire precast concrete module connection system using prestressing. However, the loads occurring on water are complex combinations of various condition, so the safe and stable performance of the module joints and bonding materials are key to the success of the construction. Therefore, micro-silica mixed aqua-epoxy development was introduced in Part 1 using a bonding material developed in this study. The performance of the micro-silica mixed aqua-epoxy(MSAE) applied joint of concrete module specimens connected by prestressing tendon was evaluated to verify the usability and safety of the material. RC beam, spliced beam connected by prestressing tendon and MSAE, and continuous prestressed concrete beam were tested for their initial cracking and maximum loads as well as cracking procedure and pattern. The results showed that the MSAE can control the stress concentration effect of the shear key and the crack propagation, and the maximum load capacity of MSAE joint specimens are only 5% less than that of continuous RC specimen. The details of the study are discussed in detail in the paper.

Evaluation of steel fiber reinforcement effect in segment lining by full scale bending test (실물파괴실험에 의한 세그먼트 라이닝의 강섬유 보강 효과 평가)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • An experimental research on the possibility of using fiber reinforced concrete precast tunnel segments instead of traditional reinforced concrete(RC) segment has been performed in europe. This solution allows removing the traditional reinforcement with several advantages in terms of quality and cost reduction. Full-scale bending tests were carried out in order to compare the behaviour of the segments under flexural actions on both rebar reinforced concrete and rebar-fiber reinforced elements. The test results showed that the fiber reinforced concrete can substitute the traditional reinforcement; in particular the segment performance is improved by the fiber presence, mainly in terms of crack.

Evaluation of Structural Performance the Hollow PC Column Joint Subjected to Cyclic Lateral Load (반복 횡하중을 받는 유공 PC 기둥 접합부의 구조성능 평가)

  • Seo, Soo-Yeon;Yoon, Seong-Joe;Lee, Woo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 2008
  • In order to improve the workability in erecting Precast Concrete (PC) members and enhance the seismic resistance capacity of the joints in PC moment frames, a new PC column and its construction process are introduced in this paper. This column is manufactured by centrifugal force in keeping the hollow tube inside; the hollow is little bit wide and the grout can be poured from top to bottom after erection at site so that more compact grouting is possible in horizontal joint. The repeated cyclic loading test for four full scaled specimens was conducted to evaluate the seismic resistance capacity of the joint designed by the proposed system. For the continuity of main reinforcements in column, two connecting methods are used in designing specimens; one is to use mechanical connector and other is lab splice. From the cyclic lateral loading test, it was found that the seismic capacity of the developed PC column joint is comparable to that of monolithic joint.

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

Work Process Analysis of the High-performed Precast Concrete Columns using Simulation Technology (시뮬레이션 기법을 활용한 고성능 프리캐스트 콘크리트 기둥의 작업프로세스 분석)

  • Shin, Young-Su;Cho, Kyuman;Cho, Chang-Geun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.49-57
    • /
    • 2014
  • Since the structure systems of construction projects have been forced to be large, high-rised, and complex, many researchers have been put their efforts to develop high strength concrete incorporating diverse advanced materials. In order to improve the performance of the concrete, the fibers leading high ductility to concrete have been used, consequently concrete columns adopting High-Performance Fiber Cement(HPFC) have been developed. This paper analyzed not only the construction work process of HPFC column installed to the real construction project, but also construction productivity of the columns by using discrete event simulation technique. As a result, several considerations on installing such a column have identified, compared with the works for typical concrete columns. In particular, there was specific characteristic to install the columns in terms of labor resource productivity, which is not shown with the work for the typical concrete columns.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.

Analysis on Bond Characteristics of Reinforcements for UHPC Hybrid Cable-Stayed Bridge Deck Joints (초고성능 콘크리트 하이브리드 사장교 바닥판 접합부 철근의 부착 성능에 대한 해석)

  • Seonwoo, Yoon Ho;Park, Sung Kyun;Kwahk, Im Jong;Yoon, Young Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.207-214
    • /
    • 2011
  • Ultra High Performance Concrete (UHPC), which is characterized by its high strength and advanced ductile behavior that is much superior to those of convention concrete, is a useful material to make thinner and longer bridges. The precast segmental construction method utilizing UHPC has been mainly studied because cast-in-place UHPC is very difficult and complicate to be achieved. As a part of those research, the structural performance evaluation of different types of joint connection method for hybrid cable-stayed bridge utilizing UHPC by using nonlinear analyses is performed in this study. The bond stress at joint is obtained by section force analyses for a 600 m cable-stayed bridge deck, and compared with the required bond stress at joint. Analysis results show that the U Type connection and straight type connection resist the highest ultimate load and bond strength, respectively. In addition, all considered joint connection systems satisfy the bond performances at joint required in the final stage of cable-stayed bridge utilizing UHPC.