• Title/Summary/Keyword: pre-tensioning

Search Result 23, Processing Time 0.028 seconds

Structural Performance Evaluation on Stress-Laminated Timber Bridge Deck Using Finite Element Analysis (유한요소해석을 이용한 응력적층 바닥판의 구조성능평가)

  • Shin, Yukyung;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • This paper represented the finite element analysis to estimate structural performance of stress-laminated deck, which is determined by deflection, stress, and aging characteristics of tensioning. After loading, the deflected shape showed plate behavior because pre-stressing make frictional force between each member. Compared between initial post-tension and the results, pre-stressing forces were decreased with deck deflection. This is because deflection occurred in the deck so that pre-stressing decreased due to load reduction. However, material plasticity was not considered so that advanced researches should be performed.

Removable shear connector for steel-concrete composite bridges

  • Suwaed, Ahmed S.H.;Karavasilis, Theodore L.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.

A dropper length calculation method of the elevating span in overlap area (무효 인상 경간에서 드로퍼 길이 계산 기법)

  • Kwon, Sam-Young;Lee, Ki-Won;Cho, Yong-Hyeon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1503-1510
    • /
    • 2011
  • The dropper length calculation method about the normal same encumbrance spans is well known independent to whether the pre-sag is given or not. But, the dropper length calculation method for the elevating span which consists in the end area of a tensioning section and normally consists with overlaps is not well known. In this study, firstly, we investigate the dropper length calculation method about the elevating span whether the insulator is contained in or not, we also recognize the effect of dropper length due to the change of the take-off point. Secondly, we very this calculation method with a catenary sample data and check again with Gyeongbu HSL design data.

  • PDF

Reinforcing Effect of Pre-Tensioned Rock Bolts in the Jointed Rocks Condition (록볼트 긴장에 의한 수평절리암반의 보강효과)

  • An, Joung-Hwan;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.388-396
    • /
    • 2009
  • Rock bolt is one of the most important supports for tunnelling to prevent excessive ground relaxation at the primary tunnel excavation stage. It forms a ground arch band by confining the ground around a tunnel. Rock bolt has various effects, such as support or hanging effect, internal pressure effect, arching effect, ground improvement effect etc. Most studies on rock bolt focused on the concept of support, but only a few researches on the ground reinforcing effect by pre-tensioning a rock bolts. In this study, large scale model tests are performed to investigate the ground reinforcing effect of rock bolts for regularly jointed rocks. Simple beam model was built to find out the reinforcing effect of jointed rocks, which was reinforced by pre-tensioned rock bolts. Settlement of model beam was analyzed through measuring its sagging for various installation intervals.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

Slenderness limit for SSTT-confined HSC column

  • Khun, Ma Chau;Awang, Abdullah Zawawi;Omar, Wahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.201-214
    • /
    • 2014
  • Due to the confinement effects, Steel-Straps Tensioning Technique (SSTT) can significantly enhance the strength and ductility of high-strength concrete (HSC) members (Moghaddam et al. 2008). However, the enhancement especially in strength may result in slender member and more susceptible to instability (Jiang and Teng 2012a). This instability is particularly significant in HSC member as it inherent the brittle nature of the material (Galano et al. 2008). The current slenderness limit expression used in the design is mainly derived from the experiment and analysis results based on Normal strength concrete (NSC) column and therefore the direct application of these slenderness limit expressions to the HSC column is being questioned. Besides, a particular slenderness limit for the SSTT-confined HSC column which incorporated the pre-tensioned force and multilayers effects is not yet available. Hence, an analytical study was carried out in the view of developing a simple equation in order to determine the slenderness limit for HSC column confined with SSTT. Based on the analytical results, it was concluded that the existing slenderness limit expressions used in the design are appropriate for neither HSC columns nor SSTT-confined HSC columns. In this paper, a slenderness limit expression which has incorporated the SSTT-confinement effects is proposed. The proposed expression can also be applied to unconfined HSC columns.

Development of a self-centering tension-only brace for seismic protection of frame structures

  • Chi, Pei;Guo, Tong;Peng, Yang;Cao, Dafu;Dong, Jun
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.573-582
    • /
    • 2018
  • This study develops and numerically verifies an innovative seismically resilient bracing system. The proposed self-centering tension-only brace (SC-TOB) is composed of a tensioning system to provide a self-centering response, a frictional device for energy dissipation, and a high-strength steel cable as a bracing element. It is considered to be an improvement over the traditional self-centering braces in terms of lightness, high bearing capacity, load relief, and double-elongation capacity. In this paper, the mechanics of the system are first described. Governing equations deduced from the developed analytical model to predict the behavior of the system are then provided. The results from a finite element validation confirm that the SC-TOB performs as analytically predicted. Key parameters including the activation displacement and load, the self-centering parameter, and equivalent viscous damping are investigated, and their influences on the system behavior are discussed. Finally, a design procedure considering controlled softening behavior is developed and illustrated through a design example.

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.

Flexural Behavior of Steel-Concrete Composite Beams Strengthened by Post Tension Method (포스트 텐션 공법으로 보강된 SC 합성보의 휨 거동)

  • Ryu, Soo-Hyun;Kim, Heui-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2010
  • This study has attempted to suggest a proper reinforcement method by strengthening unbonded post -tensioning through height of an anchorage hole, form of a saddle, and loading time point as parameters and evaluating the reinforcement method through a bending experiment. The result of this experiment indicated effects of reinforcement since the maximum strength ratio(the ratio of an experimental value to theoretical value) of SC composite beams before prestressed was 0.97 and after prestress were 1.00~1.21. As a result of analysis on displacement and strain, irrespective of height of an anchorage hole and loading time point, the D120-series specimen where an anchorage hole was installed on the neutral axis after reinforcement showed that its deflection continuously increased without sudden load reduction after maximum load and it stably behaved with relatively low strain of each part. In terms of reinforcement effects, the maximum strength of SCR-UD120 specimen prestressed after pre-loading was increased 1.72 times comparing to SC composite beams so SCR-UD120 specimen prestressed after pre-loading was shown to be the best.