• Title/Summary/Keyword: pre-strain

Search Result 420, Processing Time 0.024 seconds

Unconfined Compressive Stress-Strain Behavior of Cemented Granular Geomaterials (강화된 입상지반재료의 일축압축 응력-변형거동)

  • Park, Seong-Wan;Cho, Chung Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.183-190
    • /
    • 2009
  • It is necessary to predict the deformation and stresses on soils to establish the nonlinear stress-strain relationship of geomaterials at various strain levels. Especially, a need exists to establish the pre-failure nonlinear characteristic of cemented granular geomaterials used in road constructions. In this paper, therefore, conventional granular soils were mixed with various cementing materials, such as cement and fly ash from coal combustion by-products. Then, the normalized nonlinear behavior of cemented geomaterials was assessed using unconfined compression test. In addition, various constitutive models of soils were evaluated for estimating pre-failure non-linear behavior of cemented geomaterials from the test results.

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

A Study on the strain hardening of tube hydroforming according to process (튜브 액압성형품의 공정단계별 가공 경화 특성 연구)

  • Park, H.K.;Yim, H.S.;Yi, H.K.;Jeon, D.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF

Shear Strengthening Effect of Pre-loaded RC Beams Strengthened by CFS (재하상태를 고려한 탄소섬유 보강공법의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.709-712
    • /
    • 1999
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS). Main tet parameters was the magnitude of pre-loading at the time of the retrofit and the strengthening method of carbon fiber sheet. A series of nine specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, and failure mode. The results of this study showed that the failure mode is bonding failure between the concrete and the CFS before the tensile failure strain of the CFS is reached.

  • PDF

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

AE Characteristics on the Damage Behavior of TiNi/A16061 Shape Memory Alloy Composites at High Temperature (TiNi/A16061 형상기억복합재료의 고온에서의 손상거동에 대한 AE 특성)

  • Lee, Jin-Kyung;Park, Young-Chul;Ku, Hoo-Taek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • It has been known that tensile residual stresses occurring by the thermal expansion coefficient mismatch between fiber and matrix is a cause of the weak strength of metal matrix composites(MMCs). In order to solve this problem, TiNi alloy fiber was used as a reinforced material in TiNi/A16001 shape memory alloy composite in this study. TiNi alloy fiber improves the tensile strength of the composite by causing compressive residual stress in matrix on the basis of its shape memory effect. Pre-strain was imposed to generate the compressive residual stresses inside the TiNi/A16001 shape memory alloy composites. AE technique was used to quantify the microscopic damage behavior of the composite at high temperature. The effect of applied pre-strains on the AE behavior was also evaluated.

Enhanced Strain Imaging Using Quality Measure

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.84-94
    • /
    • 2008
  • Displacement estimation is a crucial step in ultrasonic strain imaging. The displacement between a pre- and postcompression signal in the current data window is estimated by first shifting the postcompression signal by the displacement obtained in the previous data window to reduce their decorrelation and then determining the remaining part of the displacement through autocorrelation and conversion of phase difference into time delay. However, since strain image quality tends to vary with the amount of compression applied, we propose two new methods for enhancing strain image quality, i.e., displacement normalization and adaptive persistence. Both in vitro and in vivo experiments are carried out to acquire ultrasound data and produce strain images in real time under the application of quasi static compression. The experimental results demonstrate that the methods are quite effective in improving strain image quality and thus can be applied to implementing an ultrasound elasticity imaging system that operates in real time.

Evaluation of Flow Stress of Metal up to High Strain (금속소재의 고변형률 영역 유동응력선도 평가)

  • Lee, S.K.;Lee, I.K.;Lee, S.Y.;Lee, S.M.;Jeong, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.

Influence of size and location of a pre-existing fracture on hydraulic fracture propagation path

  • Bo, Zhang;Yao, Li;Xue Y., Yang;Shu C., Li;Chao, Wei;Juan, Songa
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.321-333
    • /
    • 2023
  • Rock masses often contain natural fractures of varying sizes, and the size of the natural fractures may affect the propagation of hydraulic fractures. We conduct a series of triaxial hydraulic fracturing tests to investigate the effect of the pre-existing fracture size a on hydraulic fracture propagation. Experimental results show that the pre-existing fracture size impacts hydraulic fracture propagation. As the pre-existing fracture size increases, the hydraulic fracture propagates towards the pre-existing fracture tips, evidenced by the decreased distance between the final hydraulic fracture and the pre-existing fracture tips. Furthermore, the attracting effect of pre-existing fracture tips increases when the distance between the wellbore and the pre-existing fracture is short (L/D=2 or 4 in this study). With increased distance between the wellbore and the pre-existing fracture (L/D=6 in this study), the hydraulic fracture propagates to the middle of the pre-existing fracture rather than the tips, as the attracting effect of the pre-existing fracture diminishes.

Electrical and Mechanical Properties of Semiconductive Shield in Power Cable; Volume Resistivity and Stress-Strain Measurement (전력케이블내 반도전 재료의 전기적 및 기계적 특성; 체적저항과 Stress-Strain 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • To improve mean-life and reliability of power cable, in this study, we have investigated electrical properties and stress-strain showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both 25±1 [℃] and 90±1 [℃]. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/㎠] and 600[%]. In addition tests of stress-strain were progressed by aging specimens in air oven. From this experimental results, volume resistivity was high according to increasing the content of carbon black. And yield stress was increased, while strain was decreased according to increasing the content of carbon black. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. We could know EEA was excellent more than other specimens from above experimental results.