As the interest in AI education grows, researchers have made efforts to implement AI education programs. However, research targeting pre-service teachers has been limited thus far. Therefore, this study was conducted to develop an AI literacy education program for preservice secondary teachers. The research results revealed that the weekly topics included the definition and applications of AI, analysis of intelligent agents, the importance of data, understanding machine learning, hands-on exercises on prediction and classification, hands-on exercises on clustering and classification, hands-on exercises on unstructured data, understanding deep learning, application of deep learning algorithms, fairness, transparency, accountability, safety, and social integration. Through this research, it is hoped that AI literacy education programs for preservice teachers will be expanded. In the future, it is anticipated that follow-up studies will be conducted to implement relevant education in teacher training institutions and analyze its effectiveness.
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.101-106
/
2023
Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]
Purpose: It is not known whether bone scan is useful for the prediction of the prognosis of patients with temporomandibular disorders(TMD). The aim of the present study was to identify useful prognostic markers on bone scan for the pre-therapeutic assessment of patients with unilateral TMD. Materials and Methods: Between January 2005 and July 2007, 55 patients(M:F=9:46; mean age, $34.7{\pm}14.1$ y) with unilateral TMD that underwent a pre-therapeutic bone scan were enrolled. Uptake of Tc-99m HDP in each temporomandibular joint(TMI) was quantitated using a $13{\times}13$ pixel-square region-of-interest over TMJ and parietal skull area as background. TMJ uptake ratios and asymmetric indices were calculated. TMD patients were classified as improved or not improved and the bone scan findings associated with each group were investigated. Results: Forty-six patients were improved, whereas 9 patients were not improved. There was no significant difference between the two groups of patients regarding the TMJ uptake ratio of the involved joint, the TMJ uptake ratio of the non-involved joint, and the asymmetric index(p>0.05). However, in a subgroup analysis, the patients with an increased uptake of Tc-99m HDP at the disease-involved TMJ, by visual assessment, could be easily identified by the asymmetric index; the patients that improved had a higher asymmetric index than the patients that did not improve($1.32{\pm}0.35$ vs. $1.08{\pm}0.04$, p=0.023), Conclusion: The Tc-99m HDP bone scan may help predict the prognosis of patients with unilateral TMD after splint therapy when the TMD-involved joint reveals increased uptake by visual assessment.
In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.
Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
Journal of Bio-Environment Control
/
v.32
no.4
/
pp.434-441
/
2023
Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
Kim, Jin Sook;You, Da-Bin;Lim, Ji-Young;Lee, Sung-Eun;Kim, Yoo-Jin;Kim, Hee-Je;Chung, Nack-Gyun;Min, Chang-Ki
IMMUNE NETWORK
/
v.15
no.2
/
pp.66-72
/
2015
Currently, detecting biochemical differences before and after allogeneic stem cell transplantation (SCT) for improved prediction of acute graft-versus-host disease (aGVHD) is a major clinical challenge. In this pilot study, we analyzed the kinetics of circulating adipokine levels in patients with or without aGVHD before and after allogeneic SCT. Serum samples were obtained and stored at $-80^{\circ}C$ within 3 hours after collection, prior to conditioning and at engraftment after transplantation. A protein array system was used to measure the levels of 7 adipokines of patients with aGVHD (n=20) and without aGVHD (n=20). The resistin level at engraftment was significantly increased (p<0.001) after transplantation, regardless of aGVHD occurrence. In the non-aGVHD group, the concentrations of the hepatocyte growth factor (HGF) (mean values${\pm}$SD; $206.6{\pm}34.3$ vs. $432.3{\pm}108.9pg/ml$, p=0.040) and angiopoietin-2 (ANG-2) (mean values${\pm}$SD; $3,197.2{\pm}328.3$ vs. $4,471.8{\pm}568.4pg/ml$, p=0.037) at engraftment were significantly higher than those of the pre-transplant period, whereas in the aGVHD group, the levels of adipokines did not change after transplantation. Our study suggests that changes in serum HGF and ANG-2 levels could be considered helpful markers for the subsequent occurrence of aGVHD.
Article 325 (Prevention of Fire Explosion due to Electrostatic) of the Rule for Occupational Safety and Health Standard specifies that in order to prevent the risk of disasters caused by static electricity, fire, explosion and static electricity in the production process, However, in order to do this, it is absolutely necessary to use a pre-detection technology and a detector for antistatic discharge prediction, which is a precautionary measure by static electricity in a fire / explosion hazard place, but in Korea, And there is no technical standard for the application of the technology of the explosion proof structure of the related equipment. Research methods include domestic and overseas electrostatic discharge detection technology and literature investigation of related equipment explosion proofing technology, domestic and foreign electrostatic discharge detection device production and use situation investigation, advanced foreign technology data analysis and benchmarking. In particular, we sought to verify the results of empirical experiments using electrostatic discharge detection technology through sample purchase and analysis of related major products, development of optimization technology through prototype production, evaluation, and supplementation, and expert knowledge through expert consultation. The results of this study were developed and fabricated two prototypes of electrostatic discharge detector based on the technology / standard related to electrostatic discharge detection technology in Korea and abroad through development of electrostatic discharge detection technology and development and production of detector. In addition, based on the development of electrostatic discharge detection technology, we developed an intrinsic safety explosion proof ib class explosion proof technology applicable to the process of using and handling flammable gas and flammable liquid vapor and combustible dust. In the case of the over voltage and minimum voltage are supplied to the explosion-proof structure ESD detector, check the state of the circuit and the transient and transient currents generated by the coil and capacitor elements during the input and standby of the signal pulse voltage. Explosion-proof equipment-Part 11: Intrinsically safe explosion proof structure The comparative evaluation with the reference curve in Annex A of "i" confirms that the characteristics of the intrinsically safe explosion protection structure are met.
Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
Journal of Korea Water Resources Association
/
v.33
no.6
/
pp.745-755
/
2000
The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.
Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments show that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic elastic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Generalized contact model for the irregular contact surface of soil particles is adopted to represent the force-displacement relationship in each contact point far the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic elastic moduli is derived in the isotropic stress condition. A detailed procedure to determine the model parameters is proposed with emphasis on the practical applicability of micromechanical program to analyze the elastic behavior of the granular soils.
Aktas, Binhan Kagan;Ozden, Cuneyt;Bulut, Suleyman;Tagci, Suleyman;Erbay, Guven;Gokkaya, Cevdet Serkan;Baykam, Mehmet Murat;Memis, Ali
Asian Pacific Journal of Cancer Prevention
/
v.16
no.6
/
pp.2527-2530
/
2015
Background: The cancer of the prostate risk assessment (CAPRA) score has been defined to predict prostate cancer recurrence based on the pre-clinical data, then pathological data have also been incorporated. Thus, CAPRA post-surgical (CAPRA-S) score has been developed based on six criteria (prostate specific antigen (PSA) at diagnosis, pathological Gleason score, and information on surgical margin, seminal vesicle invasion, extracapsular extension and lymph node involvement) for the prediction of post-surgical recurrences. In the present study, biochemical recurrence (BCR)-free probabilities after open retropubic radical prostatectomy (RP) were evaluated by the CAPRA-S scoring system and its three-risk level model. Materials and Methods: CAPRA-S scores (0-12) of our 240 radical prostatectomies performed between January 2000-May 2011 were calculated. Patients were distributed into CAPRA-S score groups and also into three-risk groups as low, intermediate and high. BCR-free probabilities were assessed and compared using Kaplan-Meier analysis and Cox proportional hazards regression. Ability of CAPRA-S in BCR detection was evaluated by concordance index (c-index). Results: BCR was present in 41 of total 240 patients (17.1%) and the mean follow-up time was $51.7{\pm}33.0$ months. Mean BCR-free survival time was 98.3 months (95% CI: 92.3-104.2). Of the patients in low, intermediate and high risk groups, 5.4%, 22.0% and 58.8% had BCR, respectively and the difference among the three groups was significant (P = 0.0001). C-indices of CAPRA-S score and three-risk groups for detecting BCR-free probabilities in 5-yr were 0.87 and 0.81, respectively. Conclusions: Both CAPRA-S score and its three-risk level model well predicted BCR after RP with high c-index levels in our center. Therefore, it is a clinically reliable post-operative risk stratifier and disease recurrence predictor for prostate cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.