• Title/Summary/Keyword: pre-learning concept

Search Result 112, Processing Time 0.016 seconds

용용과 모델 구성을 중시하는 수학과 교육 과정 개발 방안 탐색

  • Jeong Eun Sil
    • The Mathematical Education
    • /
    • v.30 no.1
    • /
    • pp.1-19
    • /
    • 1991
  • This study intends to provide some desirable suggestions for the development of application oriented mathematics curriculum. More specific objects of this study is: 1. To identify the meaning of application and modelling in mathematics curriculm. 2. To illuminate the historical background of and trends in application and modelling in the mathematics curricula. 3. To consider the reasons for including application and modelling in the mathematics curriculum. 4. To find out some implication for developing application oriented mathematics curriculum. The meaning of application and modelling is clarified as follows: If an arbitrary area of extra-mathematical reality is submitted to any kind of treatment which invovles mathematical concepts, methods, results, topics, we shall speak of the process of applying mathemtaics to that area. For the result of the process we shall use the term an application of mathematics. Certain objects, relations between them, and structures belonging to the area under consideration are selected and translated into mathemtaical objects, relation and structures, which are said to represent the original ones. Now, the concept of mathematical model is defined as the collection of mathematical objcets, . relations, structures, and so on, irrespective of what area is being represented by the model and how. And the full process of constructing a mathematical model of a given area is called as modelling, or model-building. During the last few decades an enormous extension of the use of mathemtaics in other disciplines has occurred. Nowadays the concept of a mathematical model is often used and interest has turned to the dynamic interaction between the real world and mathematics, to the process translating a real situation into a mathematical model and vice versa. The continued growing importance of mathematics in everyday practice has not been reflected to the same extent in the teaching and learning of mathematics in school. In particular the world-wide 'New Maths Movement' of the 19608 actually caused a reduction of the importance of application and modelling in mathematics teaching. Eventually, in the 1970s, there was a reaction to the excessive formallism of 'New Maths', and a return in many countries to the importance of application and connections to the reality in mathematics teaching. However, the main emphasis was put on mathematical models. Applicaton and modelling should be part of the mathematics curriculum in order to: 1. Convince students, who lacks visible relevance to their present and future lives, that mathematical activities are worthwhile, and motivate their studies. 2. Assist the acqusition and understanding of mathematical ideas, concepts, methods, theories and provide illustrations and interpretations of them. 3. Prepare students for being able to practice application and modelling as private individuals or as citizens, at present or in the future. 4. Foster in students the ability to utilise mathematics in complex situations. Of these four reasons the first is rather defensive, serving to protect or strengthen the position of mathematics, whereas the last three imply a positive interest in application and modelling for their own sake or for their capacity to improve mathematics teaching. Suggestions, recomendations and implications for developing application oriented mathematics curriculum were made as follows: 1. Many applications and modelling case studies suitable for various levels should be investigated and published for the teacher. 2. Mathematics education both for general and vocational students should encompass application and modelling activities, of a constructive as well as analytical and critical nature. 3. Application and modelling activities should. be introduced in mathematics curriculum through the interdisciplinary integrated approach. 4. What are the central ideas of, and what are less-important topics of application-oriented curriculum should be studied and selected. 5. For any mathematics teacher, application and modelling should form part of pre- and in-service education.

  • PDF

Analyzing the Effectiveness of Argumentation Program to Conceptualize the Concept of Natural Selection for Elementary Science-Gifted Students (초등과학영재들의 자연선택 개념 형성을 위한 논변활동 효과 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.591-606
    • /
    • 2016
  • The purpose of this study is to develop the argumentation program to build scientific concepts on natural selection for science-gifted elementary students and to know how to implement this program. For this study, nine key concepts about natural selection such as the overproduction of offspring, limited resources, population stability, competition, variation, heredity of variation, differential survival, change of the population and speciation were selected through the literature study. The programs were developed by learning cycle instructional model. Argument writings and discourses have been collected, analyzed and compared before and after the program. Two questionnaires to compare pre and post concept change consist of multiple choice questionnaire and open-ended response question were developed and applied to 19 science-gifted elementary students. Sufficiency of the explanation and conceptual quality of the explanation were used to assess the quality of their arguments before and after the program. Discourse and visual models collected from the highest and lowest group about score improvement were compared. The scores of the gifted statistically improved significantly in multiple choice questionnaire. Students' alternative conceptions about natural selection at the beginning of the program decreased and changed scientifically after the program. Visual models drawn by the students supported the results as well. This study asserts that elementary science-gifted students are able to explain evolutionary perspectives about organism change and use the key concepts of natural selection. The study means that evolutionary perspective is possible to be reflected in elementary science curriculum for the gifted.