DOI QR코드

DOI QR Code

Analyzing the Effectiveness of Argumentation Program to Conceptualize the Concept of Natural Selection for Elementary Science-Gifted Students

초등과학영재들의 자연선택 개념 형성을 위한 논변활동 효과 분석

  • Received : 2016.07.24
  • Accepted : 2016.08.11
  • Published : 2016.08.31

Abstract

The purpose of this study is to develop the argumentation program to build scientific concepts on natural selection for science-gifted elementary students and to know how to implement this program. For this study, nine key concepts about natural selection such as the overproduction of offspring, limited resources, population stability, competition, variation, heredity of variation, differential survival, change of the population and speciation were selected through the literature study. The programs were developed by learning cycle instructional model. Argument writings and discourses have been collected, analyzed and compared before and after the program. Two questionnaires to compare pre and post concept change consist of multiple choice questionnaire and open-ended response question were developed and applied to 19 science-gifted elementary students. Sufficiency of the explanation and conceptual quality of the explanation were used to assess the quality of their arguments before and after the program. Discourse and visual models collected from the highest and lowest group about score improvement were compared. The scores of the gifted statistically improved significantly in multiple choice questionnaire. Students' alternative conceptions about natural selection at the beginning of the program decreased and changed scientifically after the program. Visual models drawn by the students supported the results as well. This study asserts that elementary science-gifted students are able to explain evolutionary perspectives about organism change and use the key concepts of natural selection. The study means that evolutionary perspective is possible to be reflected in elementary science curriculum for the gifted.

이 연구는 초등 과학영재 학생들이 자연선택 개념에 대하여 과학적 개념을 형성하기 위한 논변활동 프로그램을 개발하고 그 효과를 알아보고자 수행했다. 이를 위해 자연선택 핵심 개념을 과잉생산, 제한된 자원, 개체군 안정, 경쟁, 변이, 변이의 유전, 차등적 생존, 개체군 변화, 종 분화의 9가지 개념을 선정하여 각각의 개념을 형성할 수 있는 프로그램을 개발하였다. 초등학교 6학년 학생이 이해할 수 있는 용어로 변경한 선다형 자연선택 검사지와 개방형 검사지를 활용하여 프로그램 투입 전 후 개념 변화를 확인하였다. 개발된 프로그램은 초등 과학영재 6학년 19명 학생에게 투입하였다. 소집단 논변활동 전 후 논변 글쓰기는 설명의 충분성과 설명의 개념적인 질 범주로 구분하여 채점하였다. 논변 글쓰기 점수 향상이 큰 소집단과 적은 소집단의 시각적 모델 및 담화를 분석하였다. 연구 결과 선다형 자연 선택 검사지에서 19명 학생 모두 점수가 유의미하게 향상되었고 개방형 검사지에서도 자연 선택 핵심 개념은 증가하고 대안 개념은 줄어 들어 개발된 논변활동 프로그램은 초등 과학영재 학생들의 자연선택 개념 향상에 효과적이었음을 알았다. 논변 글쓰기 점수 향상이 큰 소집단에서는 반대 담화 및 엄격한 기준이 활용되어 논변에 대한 평가 및 수정이 이루어져 논변의 질을 향상 시킨 반면 논변 글쓰기 점수 향상이 적은 소집단에서는 반대 담화 비율이 낮고 엄격한 기준 보다 비형식적 기준이 더 많이 활용되었다. 또한 논변 글쓰기 점수 향상이 큰 소집단에서는 자료 분석에 많은 담화가 이루어 졌고 소집단 시각적 모델이 소집단 구성원들에 의해 공동 구성되어 소집단 간 토론에 활용되었고 다른 소집단에 의해 평가 및 수정이 이루어졌다. 반면, 논변 글쓰기 점수 향상이 적은 소집단에서는 특정 소집단 구성원의 시각적 모델이 소집단의 시각적 모델로 선택되었고 모델을 평가하고 선택하는 과정에 대한 담화가 이루어지지 않았다. 이러한 소집단에서는 소집단 구성원들의 시각적 모델에 대한 이해가 낮았고 소집단 간 토론에 활용이 되지 못하여 평가 및 수정이 이루어지지 않았다. 이 연구를 통해 초등 과학영재 학생들이 생명 현상에 대해 자연선택 핵심 개념을 활용한 진화적 설명이 가능한 것을 확인하였으므로 초등학교 교육과정내 진화적 관점을 반영시킬 수 있는 가능성을 엿보았다.

Keywords

References

  1. Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952-978. https://doi.org/10.1002/tea.10053
  2. Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27, 415-427. https://doi.org/10.1002/tea.3660270503
  3. Board on Science Education. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: National Academies Press.
  4. Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In Developing models in science education (pp. 41-57). Springer Netherlands.
  5. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935. https://doi.org/10.1080/095006900416848
  6. Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  7. Chi, M. T. H., de Leeuw, N., Chiu, M., & Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
  8. Cho, H., Yang, I., Lee, H., & Song, Y. (2008). An Analysis on the Level of Evidence used in Gifted Elementary Students' Debate. Journal of the Korean Association for science education, 28(5), 495-505.
  9. Cho, H. (2013). Epistemic level in middle school students' small-group argumentation using first-hand or second-hand data. Master's Thesis. The Graduate School Seoul National University.
  10. Cho, H. (2014). Development and effect of argument-based modeling strategy as teaching method in middle school students. Dissertation. Graduate School Pusan National University.
  11. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35(3), 125-129. https://doi.org/10.2307/4444260
  12. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  13. Evans, E. M. (2000). The emergence of beliefs about the origins of species in school-age children. Merrill-Palmer Quarterly, 46, 221-254.
  14. Ferrari, M., & Chi, M. T. H.(1998). The nature of naive explanations of natural selection. International Journal of Science Education, 20(10), 1231-1256. https://doi.org/10.1080/0950069980201005
  15. Furtak (2012). Linking Progression for Natural Selection to Teachers' Enactment of Formative Assessment. Journal of Research in Science Teaching, 27, 1181-1220
  16. Gutheil, G., Vera, A., & Keil, F. C. (1998). Do houseflies think? Patterns of induction and biological beliefs in development. Cognition, 66, 33-49. https://doi.org/10.1016/S0010-0277(97)00049-8
  17. Ha, M., & Cha, H. (2006). Analysis of Mis-conceptualizations regarding Evolution Originating from TV Animation and Science Books for Children. Journal of Korean Elementary Science Education, 25(4), 352-362.
  18. Ha, M., Lee, J., & Cha, H. (2006). A Cross-Sectional Study of Students' Conceptions on Evolution and Characteristics of Concept Formation about It in Terms of the Subjects: Human, Animals and Plants. Journal of the Korean Association for science education, 26(7), 813-825.
  19. Ha, M. (2007). Development of The instructional strategies of evolution based on The cross-sectional analysis of evolution conception. Master's Thesis. Graduate School of Korea National University of Education.
  20. Ha, M., Cha, H., & Ku, S. (2010). A Study of Conceptions, Interest and Acceptance of Evolution, and Religiosity between Biology Majors and Non-majors in Colleges, The Korean Journal of Biology Education, 38(3), 467-475.
  21. Hand, B., & Choi, A. (2010). Examining the impact of student use of multiple modal representations in constructing arguments in organic chemistry laboratory classes. Research in Science Education, 40(1), 29-44. https://doi.org/10.1007/s11165-009-9155-8
  22. Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: pedagogy and teacher change. Research in Science Education, 40, 5-28. https://doi.org/10.1007/s11165-009-9154-9
  23. Inagaki, K., & Hatano, G. (2002). Young children's naive thinking about the biological world. Psychology Press : New York.
  24. Inagaki, K., & Hatano, G. (2006). Young children's conception of the biological world. Current Directions in Psychological Science, 15(4), 177-181. https://doi.org/10.1111/j.1467-8721.2006.00431.x
  25. Jang, W. (2014). Research on the preconceptual type and the cause of conceptual formation of biological adaptation in 5th grade elementary school student. Master's Thesis. Graduate School of Korea National University of Education.
  26. Jeffery, K. R. (1994) A study of the presence of evolutionary protoconcepts in pre-high school textbooks. Journal of Research in Science Teaching, 31(5), 507-518. https://doi.org/10.1002/tea.3660310506
  27. Jimenez-Aleixandre, M., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in science education : perspectives from classroom-based research(pp.3-28). Dordrecht London: Springer.
  28. Jo, J. (2014). Pre-service biology teachers' perspectives about biological meanings of competition and adaptation. Master's Thesis. Graduate School of Korea National University of Education.
  29. Jung, J., & Kim, H. (2010). Influence of ACESE on high school students' argumentative structure and evolutionary conception. Biology Education. 38(1), 168-183. https://doi.org/10.15717/bioedu.2010.38.1.168
  30. Kuhn, L., & Reiser, B. (2006). Structuring activities to foster argumentative discourse. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  31. Kwon, J., & Cha, H. (2015) Analyzing the effect of argumentation program for improving teachers' conceptions of evolution. Journal of the Korean Association for science education, 35(4), 691-707. https://doi.org/10.14697/jkase.2015.35.4.0691
  32. Lee. G., Kwon. Y., Kim. Y., Baek. S., Shin. D., Yun. Y., Jang. Y., & Cho. M (2013). Life ScienceI. Seoul: Sangsangacademy Co.
  33. Lee. J., Lee. B., Ku. H., Oh. H., Ryu. H., & Kang. H. (2012). Life Science II. Seoul: Chunjae Education Co.
  34. Lee. M., Oh. S., & Lee. G. (2005). Analysis of Elementary School Children's Concepts in Evolution Based on Science History. Journal of Korean Elementary Science Education, 24(2), 145-159.
  35. Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapango, L. (1996). When is less more: meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64-73. https://doi.org/10.1037/0022-0663.88.1.64
  36. Mayr, E. (1997). This is biology. Cambridge, MA: Harvard University Press.
  37. McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191. https://doi.org/10.1207/s15327809jls1502_1
  38. Medin, D. L., & Atran, S. (2004). The native mind: Biological categorization and reasoning in development and across cultures. Psychological Review, 111, 960-983. https://doi.org/10.1037/0033-295X.111.4.960
  39. Nehm, R. H., Ha, M., Rector, M., Opfer, J., Perrin, L., Ridgway, J., & Mollohan, K. (2010). Scoring guide for the open response instrument (ORI) and evolutionary gain and loss test (EGALT). Technical Report of National Science Foundation REESE Project 0909999. Accessed online 10 Jan 2011 at: http://evolutionassessment.org.
  40. Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237-256. https://doi.org/10.1002/tea.20400
  41. NRC(National Research Council) (2011). A framework for K-12 science education; Practice, crosscutting concepts, and core ideas. Washington D. C.: National Academy Press.
  42. Oh. P., & Lee. J. (2014). Criteria for Evaluating Scientific Models Used by Pre-service Elementary Teachers. Journal of the Korean Association for science education, 34(2), 135-146. https://doi.org/10.14697/jkase.2014.34.2.0135
  43. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  44. Poling, D. A., & Evans, E. M. (2002). Why do birds of a feather flock together? Developmental change in the use of multiple explanations: Intention, teleology, essentialism. British Journal of Developmental Psychology, 20, 89-112. https://doi.org/10.1348/026151002166343
  45. Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2012). Campbell Biology, 9th Eds. Pearson Education, Inc.
  46. Rutledge, M. L., Warden, M. A. (2000). Evolutionary theory, the nature of science & high school biology teachers: critical relationships. The American Biology Teacher, 62(1), 23-31. 448-484. https://doi.org/10.2307/4450822
  47. Sampson, V. & Clark, D. (2008). The Impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
  48. Sampson, V., & Clark, D. (2009). The effect of collaboration on the outcomes of argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
  49. Sampson, V., & Clark, D. (2011). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41, 63-97. https://doi.org/10.1007/s11165-009-9146-9
  50. Sampson, V., & Grooms, J. (2010). Generate an argument: an instructional Model. Science Teacher, 77(5), 32-37.
  51. Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217-257. https://doi.org/10.1002/sce.20421
  52. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Schwarz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  53. Smith, M. U. (2010). Current status of research in teaching and learning evolution: II. padagogical issues. Science & Education, 19(6-8), 539-571. https://doi.org/10.1007/s11191-009-9216-4
  54. Walton, D. M. (1990). What is reasoning? what is an argument?. The Journal of Philosophy, 87, 399-419. https://doi.org/10.2307/2026735
  55. Yang. I., Kim. H., Park. K., Lim. S., Kim. J., Shin. H., Eum. A., & Baek. S. (2013). Elementary science teachers' guide book 6-1. Seoul: MiraeN.

Cited by

  1. 초등 과학 영재 학생들의 자연선택 개념 이해를 위한 논변 활동에서 나타난 인식적 이해와 논변활동 수준 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.565