• Title/Summary/Keyword: pre-damage

Search Result 601, Processing Time 0.029 seconds

Finite Element Damage Analysis Method for J-Resistance Curve Prediction of Cold-Worked Stainless Steels (조사취화를 모사한 스테인레스강의 파괴저항선도를 예측하기위한 유한요소 손상해석기법)

  • Seo, Jun Min;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Materials in nuclear power plants can be embrittled by neutron irradiation. According to existing studies, the effect of the material property by irradiation embrittlement can be approximately simulated by cold working (pre-strain). In this study, finite element damage analysis method using the stress-modified fracture strain model is proposed to predict J-Resistance curves of irradiated SUS316 stainless steel. Experimental data of pre-strained SUS316 stainless steel material are obtained from literature and the damage model is determined by simulating the tensile and fracture toughness tests. In order to consider damage caused by the pre-strain, a pre-strain constant is newly introduced. Experimental J-Resistance curves for various degrees of pre-strain are well predicted.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Impact Characteristics of Glass Fiber Reinforced Composite Curved Beams w.r.t. Pre-load (예 하중이 유리섬유 복합재료 곡선 보의 충격특성에 미치는 영향)

  • Lee, Seung-Min;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.162-167
    • /
    • 2004
  • The low velocity impact characteristics of composite laminate curved beams are investigated to increase damage tolerance and reduce the deflection. Drop weight impact tests of the composite curved beam were performed with respect to pre-load, then the damage after impact was measured by macrography. Also, finite element analyses were performed using ABAQUS to investigate the stress state of composite curved beam with respect to pre-load and impact. From the investigation, it was found that pre-load of the composite curved beams had much influence on impact damage of the curved beam, which showed good agreement with the experiment results.

  • PDF

Action of various wavelengths of visible light on U.V.-radiation damage to yeast cells. (효모세포의 자외선조해효과에 대한 각종 파장 광선의 작용)

  • 이민재;이광웅
    • Korean Journal of Microbiology
    • /
    • v.6 no.4
    • /
    • pp.122-130
    • /
    • 1968
  • Action of various wavelengths of visible light on ultraviolet-radiation damage to haploid yeast cells, Saccharomyces cerevisiae 23971, was studied. The results were obtained on the basis of the survival and respiration rates by pre- and post-illuminations of various wavelengths before and after U.V.-irradiations on the yeast cells. Among the wavelengths tested, 635 $m{\mu}$, 429 $m{\mu}$ and white light which caused increase of respiration in pre-treatment alone, induced less resistance to the U. V.-damage than in the control, in both pre- and U.V.-treatment. On the contrary, such wavelengths as 574 $m{\mu}$and 530 $m{\mu}$, showing a weak effect on respiration in pre-treatment increased the susceptability to U.V.-radiation. Photoinactivation was generally obtained by both pre- and post- illuminations along with U.V.-treatment. At 635 $m{\mu}$ the PI rate was the lowest and also a low PI rate was shown at 429 $m{\mu}$. But 429 $m{\mu}$, in the post-treatment of the yeast cells pre-treated by the white light and the darkness respectively, showed the highest PI rate. In both pre- and post- treatment of 574, 530 and 473 $m{\mu}$,the PI rates were high to the same degree. Post-treatments of the wavelengths on U.V.-treated yeasts incubated rather under the white light than the darkness induced lower PI rate. It is assumed that there are great differences in action even of the same wavelength, depending upon the various combination of pre- and post-treatments, and that, moreover, the action of various wavelengths of visible light on U.V.-damage on the cells are concerned with the doses and dose rates of U.V. and visible lights. These observations led to an interpretation that each wavelength of visible light might exert distinctively different effects oil U. V.-damage, mainly causing the inhibition or stimulation of enzymes in the yeast cells.

  • PDF

Effect of pre-bending on the properties of impact damage in CFRP laminates (CFRP적층판의 충격손상특성 및 손상거동에 미치는 초기굽힘의 영향)

  • 신형섭;서창민;황남성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1144-1149
    • /
    • 1994
  • Damage caused in CFRP laminates by low energy impact of steel ball are investigated ultrasonically. Two types of laminated specimens having different stacking sequence are used as a target material. The effects of pre-bending on the behaviors of impact damage are specifically discussed. The initiation and progagation behaviors of delamination were largely dependent upon the bending rigidity of each specimen. Specimen C having higher bending rigidity produced larger delamination damage than the Specimen D having relatively low bending rigidity, however it was little for the Specimen C. Application of pre-bending increased the apparent bending rigidity of target during impacting, it produced delamination at lower impact energy level compared to the case of no preload.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

Performance Evaluation of Rcentering Smart Damper by Pre-Compression of Polyurethane (폴리우레탄 선압축량에 따른 자동복원 스마트 감쇠장치의 일축반복하중에 대한 성능 평가)

  • Jang, Heemyung
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • As the magnitude and frequency of earthquakes increase in Korea, interest in earthquake damage reduction technology has increased. Therefore, research on vibration damping devices that directly respond to seismic loads is being actively researched. After an earthquake, damage or destruction of the device occurs due to the yield of materials, and thus it takes considerable cost and time for restoration and replacement. To supplement the problems of the existing earthquake damage reduction technology, a study was conducted on the recentering smart damper that can be used continuously after an earthquake. In this study, the recentering smart damper that can be restored to its original shape after load removal was developed using superelastic shape memory alloy, pre-compressed polyurethane. General steel was commonly applied to verify the seismic performance of the superelastic shape memory alloy, and the performance of the smart damper was verified according to the amount of polyurethane pre-compressed

Damage Detection Technique based on Texture Analysis

  • Jung, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.698-701
    • /
    • 2006
  • Remotely sensed data have been utilized efficiently for damage detection immediately after the natural disaster since they provide valuable information on land cover change due to spatial synchronization and multitemporal observation over large areas. Damage information obtained at an early stage is important for rapid emergency response and recovery works. Many useful techniques to analyze the characteristics of the pre- and post-event satellite images in large-scale damage detection have been successfully investigated for emergency management. Since high-resolution satellite images provide a wealth of information on damage occurred in urban areas, they are successfully utilized for damage detection in urban areas. In this research, a method to perform automated damage detection is proposed based on the differences of the textural characteristics in pre- and post- high resolution satellite images.

  • PDF