• Title/Summary/Keyword: pre-cracked specimen

Search Result 20, Processing Time 0.026 seconds

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

Effect of Microstructure and Alloying Element on the ISCC Characteristics of Zr Cladding (Zr 피복관의 ISCC 특성에 미치는 미세조직 및 첨가원소의 영향)

  • Park, Sang Yoon;Choi, Byoung Kwon;Lee, Myung Ho;Kim, Jun Hwan;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.164-171
    • /
    • 2005
  • Iodine-Induced Stress Corrosion Cracking (ISCC) properties of Zircaloy-4 and HANA4 developed in KAERI for the high burn-up nuclear fuel cladding were evaluated. To confirm the effect of final heat treatment on ISCC resistance of Zr-alloy, stress relieved and recrystallized specimens were prepared and tested. With the pre-cracked specimen at internal surface, ISCC crack propagation rates and threshold stress intensity factor ($K_{ISCC}$) based on the fracture mechanics were measured by internal pressurization test at $350^{\circ}C$ in iodine environment. $K_{ISCC}$ of Zircaloy-4 and HANA4 cladding were $3.3MPa{\cdot}m^{1/2}$ and $4.4MPa{\cdot}m^{1/2}$, respectively. Pitting corrosion at the crack surface was observed and it seemed that TG crack propagation was derived from the pitting.

Implementation of a macro model to predict seismic response of RC structural walls

  • Fischinger, Matej;Isakovic, Tatjana;Kante, Peter
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.211-226
    • /
    • 2004
  • A relatively simple multiple-vertical-line-element macro model has been incorporated into a standard computer code DRAIN-2D. It was used in blind predictions of seismic response of cantilever RC walls subjected to a series of consequent earthquakes on a shaking table. The model was able to predict predominantly flexural response with relative success. It was able to predict the stiffness and the strength of the pre-cracked specimen and time-history response of the highly nonlinear wall as well as to simulate the shift of the neutral axis and corresponding varying axial force in the cantilever wall. However, failing to identify the rupture of some brittle reinforcement in the third test, the model was not able to predict post-critical, near collapse behaviour during the subsequent response to two stronger earthquakes. The analysed macro model seems to be appropriate for global analyses of complex building structures with RC structural walls subjected to moderate/strong earthquakes. However, it cannot, by definition, be used in refined research analyses monitoring local behaviour in the post critical region.

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

Evaluation of the Fracture Toughness Transition Characteristics of RPV Steels Based on the ASTM Master Curve Method Using Small Specimens (소형시험편의 Master Curve 방법을 이용한 원자로 압력용기강의 파괴인성 천이특성평가)

  • Yang, Won-Jon;Heo, Mu-Yeong;Kim, Ju-Hak;Lee, Bong-Sang;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.303-310
    • /
    • 2000
  • Fracture toughness of five different reactor pressure vessel steels was characterized in the transition temperature region by the ASTM E1921-97 standard method using Charpy-sized small specimens. T he predominant fracture mode of the tested steels was transgranular cleavage in the test conditions. A statistical analysis based on the Weibull distribution was applied to the interpretation of the scattered fracture toughness data. The size-dependence of the measured fracture toughness values was also well predicted by means of the Weibull probabilistic analysis. The measured fracture toughness transition curves followed the temperature-dependence of the ASTM master curve within the expected scatter bands. Therefore, the fracture toughness characteristics in the transition region could be described by a single parameter, so-called the reference temperature (T。), for a given steel. The determined reference temperatures of the tested materials could not be correlated with the conventional index temperatures from Charpy impact tests.

ESTIMATION OF FATIGUE LIFE BY LETHARGY COEFFICIENT USING MOLECULAR DYNAMIC SIMULATION

  • Song, J.H.;Noh, H.G.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.215-219
    • /
    • 2004
  • A vehicle structure needs to be more precisely analyzed because of complexities and varieties. Structural fatigue which is generated by fluctuations of stresses during the service life of a mechanical system is the primary concern in the structural design for safety. A fatigue life is difficult to obtain in structural components during the service life of mechanical systems since the fluctuating stress contributes to fatigue. This study introduces new procedures to measure the lethargy coefficient and to predict the fatigue life of a mechanical structure by using molecular dynamic simulation. A lethargy coefficient is the total defect-estimating coefficient, which was obtained by using the results of a simple tensile test in this study. With this lethargy coefficient, fatigue life was estimated. The proposed method will be useful in predicting the fatigue life of a structurally-modified vehicle design. The effectiveness of the proposed method using lethargy coefficient measurement to predict the fatigue life of a structure was examined by applying this method to predict the fatigue life of SS41 steel, used extensively as material of vehicle structures. Two types of specimen such as pre-cracked plate and simple plate is discussed. equation of fatigue life using the lethargy coefficient and failure time, both obtained from a simple tensile test, will be useful in engineering. This measurement and prediction technology will be extended for use in analysis of any geometric shapes of modified automotive structures.

A Study on Crack Propagation of Solid Propellant by Rapid Pressurization (고속가압에 의한 고체추진제의 균열진전평가에 관한 연구)

  • Ha, Jaeseok;Kim, Jaehoon;Yang, Hoyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.79-84
    • /
    • 2012
  • An experiment of rapid pressurization-induced crack propagation of solid propellant was conducted by using a windowed test chamber. A pre-cracked specimen of solid propellant is installed in the chamber, and highly compressed nitrogen gas in an accumulator pressurizes the chamber until the chamber pressure reaches set-up pressure to make the chamber depressurization. Pressure-time trace was obtained from the experimental result, and pressurization rate was defined from the trace. In this study, three pressurization rates (64.34, 73.86 and 85.44 MPa/s) are considered, and propagation lengths are measured. Also, a progression of the crack propagation recorded by a high-speed digital camera is presented.

A Study on Crack Propagation of Solid Propellant by Rapid Pressurization (고속압력하중부가에 의한 고체추진제의 균열진전평가에 관한 연구)

  • Ha, Jae-Seok;Kim, Jae-Hoon;Yang, Ho-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.539-544
    • /
    • 2012
  • An experiment of rapid pressurization-induced crack propagation of solid propellant was conducted by using a windowed test chamber. A pre-cracked specimen of solid propellant is installed in the chamber, and highly compressed nitrogen gas in a accumulator pressurizes the chamber until the chamber pressure reaches set-up pressure to make the chamber depressurization. Pressure-time trace was obtained from the experimental result, and pressurization rate was defined from the trace. In this study, three pressurization rates (64.34, 73.86 and 85.44 MPa/s) are considered, and propagation lengths are measured. Also, a progression of the crack propagation recorded by a high-speed digital camera is presented.

  • PDF

Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam (낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Park, Moon-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • Members used for the Korean traditional joints have been processed by handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increasedby handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increased by two times with shear failures on the tenon than the control specimens. The maximum tensile strength was obtained in the specimen of 25 degrees, and no difference was observed in the changes of neck widths.