• 제목/요약/키워드: practical Superconductor

Search Result 35, Processing Time 0.02 seconds

Evaluation of Mechanical Property and Fatigue Damage in A Practical Superconducting Cable for Magnet (초전도 마그네트용 실용 초전도 복합선재의 기계적 특성 및 피로손상 평가에 관한 연구)

  • Sin, Hyeong-Seop;O, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.761-768
    • /
    • 2000
  • In order to investigate how the fatigue damage effects on the critical properties of superconductor, a fatigue test at room temperature and an Ic measurement test at 4.2K were carried out in this study, respectively, using a 9 strand Cu-Ni/NbTi/Cu composite cable. Through the fatigue test of a 9 strand Cu-NUNbTi/Cu composite cable, a conventional S-N curve was plotted even though there was a possibility of fretting among strands. It was found that the maximum stress corresponding to the inflection point on the S-N curve obtained was nearly the same value as the yielding strength of cable obtained from the static tensile test. However, the effect of cabling in multi-strands superconducting cable on the fatigue strength was not noticeable. The critical current(Ic) measurement was carried out at 4.2K in a NbTi strand out of the fatigued cable. It showed a degradation of lc at high stress amplitude regions over 380NTa, and the degradation became significant as the applied stress amplitude increased.

Introduction of The First Demonstration Project for the Application of HTS Cable and SFCL to Real Smart Grid in South Korea (22.9kV 고온 초전도 케이블.초전도 한류기 스마트 그리드 적용을 위한 초전도 시범사업)

  • Yang, B.;Park, J.;Lee, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • Until now some countries including South Korea have made big progress and many efforts in the development of high temperature superconductor (HTS) power equipments. Especially, HTS Cable and superconducting fault current limiter (SFCL) are the strongest candidates among them from the viewpoint of applying to real grid. In South Korea, HTS cable and SFCL have been installed in test fields and tested successfully at Gochang PT Center of KEPCO. In order to meet practical requirements and be feasible in real grid, a demonstration project for HTS cable and SFCL systems, called GENI(green superconducting electric power network at Icheon substation) project, has been initiated to install 23kV HTS cable and SFCL systems in a utility network in South Korea since 2008. Namely, it says the first demonstration project for the application HTS system to real smart grid in South Korea. This paper presents the design and the application plan of the 22.9kV HTS cable and SFCL in 154kV Icheon substation in South Korea with the viewpoint of applying in Smat Grid.

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3 상 다층 고온 초전도 케이블의 모델링 및 과도 해석)

  • Lee, Jun-Yeop;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

Estimation of critical current density of a YBCO coated conductor from a measurement of magnetization loss (자화손실 측정값으로부터 추정한 YBCO CC의 임계전류밀도 평가)

  • Lee, S.;Park, S.H.;Kim, W.S.;Lee, J.K.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.16-20
    • /
    • 2010
  • For large scale power applications of HTS conductor, it is getting more important to have a stacked HTS coated conductor with low loss and large current capacity. But it was not easy to measure some electric properties. Stabilizer free YBCO CC for striated/ stacked conductors is easily burned out during the measurement of the critical current density because it has no stabilizer and it is difficult to set-up the current lead and voltage taps because it has many pieces of YBCO CC in a conductor. Instead of direct measuring the critical current of a stacked HTS coated conductor, indirect estimation from measuring a magnetization loss of HTS coated conductor could be useful for practical estimation of the critical current. The magnetization loss of a superconductor is supposed to be affected by a full penetrating magnetic field, and it tends to show an inflection point at the full penetrating magnetic field when we generate the graph of magnetization loss vs. external magnetic field. The full penetrating magnetic field depends on the shape of the conductor and its critical current density, so we can estimate the effective critical current density from measuring the magnetization loss. In this paper, to prove the effectiveness of this indirect estimation of the critical current, we prepared several different kinds of YBCO CC(coated conductor) including a stacked conductor short samples and measured the magnetization losses and the critical currents of each sample by using linked pick up coils and direct voltage measurement with transport current respectively.