• Title/Summary/Keyword: ppd

Search Result 290, Processing Time 0.022 seconds

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

A correlation of the modern scientific efficacy of Korean Red Ginseng with the legendary medicine for anti-aging and longevity (전설적 불로장생약과 고려홍삼의 현대 과학적 효능과의 연관성)

  • Yi, Yeong-Deuk
    • Journal of Ginseng Culture
    • /
    • v.2
    • /
    • pp.39-70
    • /
    • 2020
  • In this paper, through the mutual interpretation and verification of the ancient Korean history books with different origin that have been suspected as false documents, it proves that they could be logically real records and reveal that the substance of the legendary 'medicine for anti-aging and longevity', which also had been mentioned in Chinese old books, is Korean ginseng. Furthermore, with reference to the modern Y chromosomal map of the migratory routes of mankind corresponding to these routes recorded in 「Budoji」, the core history book, the formation of the four ethnic constitution groups (Sasang Constitution) based on the life style of each human group has been estimated. And the cause of Korean ginseng with fever problem for Southeast Asians is their pharmacogenomic constitution problem by protopanaxatriol (PPT) type ginsenosides in ginseng. It was resolved with over production of protopanaxdiol (PPD) type ginsenosides against PPT type in Korean red ginseng as historical or scientific point of view. In addition, by explaining that the processing method to Korean red ginseng could increase red ginseng acidic polysaccharides (RGAP), the RGAP, PPD type ginsenosides, and arginine which is originally abundant in Korean ginseng could increase the expression of the 'heat shock proteins' as a kind of chaperone in the body, this paper presents the theory allowing the scientific interpretation of the efficacy of Korean red ginseng as an 'adaptogen' or 'medicine for anti-aging and longevity'. Lastly, through the consideration of the growing environment of American ginseng and Korean ginseng, the differences are presented.

A Qualitive Research of N2, O2 Permeation Property in PMDA/ MDA- Phenylene Diamine Copolyimide (PMDA/MDA-Phenylene diamine 계열의 공중합체막에서의 산소, 질소 투과 특성의 정성적 고찰)

  • Lee, Kyung-Rok;Na, Seong-Sun;Kim, Jong-Pyo;Min, Byoung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • Copolyimide membranes of different chemical structure based on pyromellitic dianhydride (PMDA)/methylendianiline(MDA) were prepared by varying their chemical compositions with adding meta-phenylendiamine (MPD), para- phenylendiamine (PPD), 2,4,6- trimethyl-1,3-phenylenediamine(TriMeMPD) as a co-monomer. The $N_2$ and $O_2$ permeation properties are qualitatively correlated to specific free volume and intersegmental distance of membrane. The partial replacement of MDA with MPD or PPD caused in the PMDA/MDA based membranes increase in density, and decrease in free volume, d-spacing, consequently resulted in decreased permeability coefficient. In the case of TriMeMPD, opposite results were observed. In all membranes, the permeability coefficients were pressure independent, and membranes which have high permeability coefficient showed low $N_2/O_2$ ideal separation factor as an usual manner. The permeability coefficient also increased with temperature and $N_2/O_2$ ideal separation factor decreased. The increase ratio of the $N_2$ permeability coefficient was larger than that of $O_2$.

  • PDF

Platelet-rich fibrin along with a modified minimally invasive surgical technique for the treatment of intrabony defects: a randomized clinical trial

  • Ahmad, Nabila;Tewari, Shikha;Narula, Satish Chander;Sharma, Rajinder Kumar;Tanwar, Nishi
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.355-365
    • /
    • 2019
  • Purpose: The modified minimally invasive surgical technique (M-MIST) has been successfully employed to achieve periodontal regeneration. Platelet-rich fibrin (PRF) is known to enhance wound healing through the release of growth factors. This study aimed to observe the outcomes of periodontal surgery when M-MIST was used with or without PRF for the treatment of isolated intrabony defects. Methods: This randomized clinical trial was conducted on 36 systemically healthy patients, who had chronic periodontitis associated with a single-site buccal probing pocket depth (PPD) and clinical attachment level of ≥5 mm. Patients were randomly divided into 2 groups: the test group treated with M-MIST and PRF, and the control group treated with M-MIST alone. The primary periodontal parameters analyzed were PPD, relative attachment level (RAL), and relative gingival margin level. The radiographic parameters analyzed were change in alveolar crest position (C-ACP), linear bone growth (LBG), and percentage bone fill (%BF). Patients were followed up to 6 months post-surgery. Results: Intragroup comparisons at 3 and 6 months showed consistently significant improvements in PPD and RAL in both the groups. In intergroup comparisons, the improvement in PPD reduction, gain in RAL, and the level of the gingival margin was similar in both groups at 3 and 6 months of follow-up. Furthermore, an intergroup comparison of radiographic parameters also demonstrated similar improvements in C-ACP, LBG, and %BF at 6 months of follow-up. Conclusions: M-MIST with or without PRF yielded comparable periodontal tissue healing in terms of improvements in periodontal and radiographic parameters. Further investigation is required to confirm the beneficial effects of PRF with M-MIST.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Comparisons of Antidiabetic Effect between Ginseng Radix Alba, Ginseng Radix Rubra and Panax Quinquefoli Radix in MLD STZ-induced Diabetic Rats (Multiple Low Dose Streptozotocin으로 유도된 당뇨 흰쥐에서 백삼, 홍삼, 화기삼의 항당뇨 활성 비교)

  • Park, Kyeong-Soo;Ko, Sung-Kwon;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.27 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • This study was designed to compare the antidiabetic activities between Ginseng Radix Alba (GRA), Ginseng Radix Rubra (GRR) and Panax Quinquefoli Radix (PQR) in multiple low dose (MLD) streptozotocin (STZ) (20 mg/kg i.p injection far 5 days) induced diabetic rats. In the glucose tolerance test, 500 mg/kg of each ginseng ethanol extract was administered intraperitoneally 30 min before glucose challenge. While GRA failed to lower blood glucose level, GRR and PQR both significantly prevented the hyperglycemia when compared with the control group. In the MLD STZ-induced diabetic rats, 300 mg/kg of each ginseng ethanol extract was administered intraperitoneally for 2 weeks. Plasma glucose and insulin levels were markedly improved in all treatment groups. While GRR showed the highest antidiabetic activity, and GRA and PQR revealed somewhat equipotent antidiabetic activities, but less than that in GRR-treated group as far as blood parameters and diabetic symptoms such as polyphagia and polydipsia are concerned. Blood glucose levels were closely associated with plasma insulin levels, and this result may suggest that ginseng ethanol extracts showed the activity to enhance insulin secretion as well as preventing destruction of pancreatic islet cells. To elucidate the relationship between antidiabetic activity and ginsenoside profiles, seven major ginsenosides were quantified by HPLC. We figured out the fact that protopanaxatriol (PPT): proptopanaxadiol (PPD) ratio might play an important role in its hypoglycemia effects.

The Clinical Study on the Characteristics of Pulmonary Lesions Which Should Be Differentiated from Pulmonary Tuberculosis in Lung Resection Cases (폐절제 예에서 결핵과 구별해야 할 질환의 특성에 관한 임상적 고찰)

  • 정황규;정성운;박서완
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1232-1240
    • /
    • 1996
  • From January 1990 through June 1995, we operated on 121 patients who were suspected for pulmonary tuberculosis without definite final diagnosis. After operation the final pathologic diagnoses were as follows: 68 pulmonary tuberculosis in which 29 were tuberculoma, 23 lung cancer, 16 bronchiectasis, 6 aspergilloma, 2 lung abscess, 2 benign cyst and 4 others. In 121 cases, 81 were male and 40 were female and the peak age incidence was 4th decade in tuberculosis (39.7%) and 6th and 7th decade in lung cancer (69.6%). The diagnoses in 44 cases presented roentgenographically as pulmonary nodules were pulmonary tuberculosis(29 cases) and lung cancer(15 cases). Tuberculous nodules tended to be smaller in size with calcification and satellite lesions compared to carcinomas. Indications for operation were solitary nodules 44 cases (36.4%); destroyed lobe 31(25.6%); hemoptysis 25 (20.7%); cavitary lesion 11(9.1 %); bronchostenosis 3 (2.5%); destroyed lung 5(4.1 %) and destroyed lung with empyema 2(1.7%). We conclude that preoperatively suspected pulmonary tuberculosis should be distinguished from various pulmonary lesions such as carcinoma, bronchiectasis, aspergilloma, lung abscess and benign cyst. For the possibility of carcinoma, pulmonary nodules of size greater than 3cm, non-calcified, non satellite lesion, newly developed nodule even under the anti-tuberculous medication, negative PPD skin test with elevated CEA level are recommended for an early resectional surgery and follow-up and delayed surgery is recommended in cases such as pulmonary nodules less than 3 cm in size with calcification, satellite lesion, positive PPD skin reaction and elevated ESR, CRP, ALP levels.

  • PDF

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

Impact of NR1I2, adenosine triphosphate-binding cassette transporters genetic polymorphisms on the pharmacokinetics of ginsenoside compound K in healthy Chinese volunteers

  • Zhou, Luping;Chen, Lulu;Wang, Yaqin;Huang, Jie;Yang, Guoping;Tan, Zhirong;Wang, Yicheng;Liao, Jianwei;Zhou, Gan;Hu, Kai;Li, Zhenyu;Ouyang, Dongsheng
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.460-474
    • /
    • 2019
  • Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.