• Title/Summary/Keyword: pozzolanic properties

Search Result 129, Processing Time 0.026 seconds

Rock wool wastes as a supplementary cementitious material replacement in cement-based composites

  • Lin, Wei-Ting;Cheng, An;Huang, Ran;Wu, Yuan-Chieh;Han, Ta-Yuan
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.93-104
    • /
    • 2013
  • The use of rock wool waste, an industrial by-product, in cement-based composites has positive effects on the environment because it reduces the problems associated rock wool disposal. The experiments in this study tested cement-based composites using various rock wool waste contents (10, 20, 30 and 40% by weight of cement) as a partial replacement for Portland cement in mortars. The pozzolanic strength activity test, flow test, compressive strength test, dry shrinkage test, absorption test, initial surface absorption test and scanning electron microscope observations were conducted to evaluate the properties of cement-based composites. Test results demonstrate that the pozzolanic strength activity index for rock wool waste specimens is 103% after 91 days. The inclusion of rock wool waste in cement-based composites decreases its dry shrinkage and initial surface absorption, and increases its compressive strength. These improved properties are the result of the dense structure achieved by the filling effect and pozzolanic reactions of the rock wool waste. The addition of 30% and 10% rock wool wastes to cement is the optimal amount based on the results of compressive strength and initial surface absorption for a w/cm of 0.35 and 0.55, respectively. Therefore, it is feasible to utilize rock wool waste as a partial replacement of cement in cement-based composites.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh (혼화재 종류 및 활성황토 대체율별 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 최희용;김무한;김문한;황혜주;최성우
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Pozzolan is to improve the strength and the durability of concrete as a result of the pozzolanic reaction, Broadly speaking, pozzolanic materials can be artificial materials, such as slica fume and fly ash, and natural material, such as rice husk ash, clay, volcanic ash, clayish pozzolan. Hwangtoh is a mineral which belongs to a group of matakaolin, especially halloysite, and the main elements is SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$. The purpose of this study is to examine the application of Hwangtoh for the concrete admixtures, the composition of this study is shown as follows. Chapter I is analysis for properties of concrete as the kinds of admixture, and Chapter H is analysis for properties of concrete as the replacement ratio of activated Hwangtoh. As a result of this study, Hwangtoh is found to have high practical use as pozzolanic material, and the pertinent range of replacement ratios of Hwangtoh on cement are 10∼20 %.

ASSESSMENT OF PROPERTIES AND DURABILITY OF FLY ASH CONCRETE USED IN KOREAN NUCLEAR POWER PLANTS

  • Cho, Myung-Sug;Noh, Jae-Myoung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-342
    • /
    • 2012
  • Since the opening of the Shin-Kori #1,2 in 2005, fly ash mixed concrete has been used for NPP concrete structures under construction in Korea with the aim of preventing aging and improving durability. In this paper, the quality suitability of fly ash manufactured in Korea is assessed and the basic physical properties of fly ash mixed concrete and its durability against primary causes of aging are verified through experimental methods. Because of the internal structure filling effect from the pozzolanic reaction of fly ash and the resulting improvements in mechanical performance in such areas as strength and salt damage resistance, the durability of fly ash mixed concrete is shown to be superior. It is judged that this result can be applied in measures not only for improving the safety of NPP structures in operation in Korea but also for implementing effective structure life management should extending the life of structures be needed in the future.

Reaction Products and Properties of Clay Mixed with Lime (점토와 석회의 혼합에 의한 반응생성물과 물성변화)

  • 김병규;황진연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.505-512
    • /
    • 1999
  • Soft marine clay deposits pose several foundation problems. Generally, lime stabilization is used worldwide for solidifying of soft marine clay deposits. In this paper, a series of laboratory tests were conducted to verify clay-lime reaction. A clay was collected from Pusan, which was mixed with various quantities of quick lime and slaked lime. Various compounds produced by clay-lime reaction were identified by X-ray diffraction analysis. The physico-chemical properties of the clay were also investigated. Compounds such as calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminate (CA), hillebrandite, and gehlenite were identified. It is likely that such compounds were mainly produced by pozzolanic reaction. Based on the change of physico-chemical properties obtained by the reaction, the water content was considerably decreased when lime was added to the clay. In addition, unconfined strength was increased. In the other hand, quick lime was more effective than slaked lime in decreasing and increasing of the water content and unconfined strength, respectively. Fewer cracks were produced when the clay was mixed with quick lime. It is suggested that these beneficial changes produced by the mixing of the clay and lime depend on the properties of compounds obtained by chemical reaction.

  • PDF

Durability properties of concrete containing metakaolin

  • Nas, Memduh;Kurbetci, Sirin
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.159-175
    • /
    • 2018
  • The main aim of this study is to investigate the possible effects of metakaolin on strength and durability properties of concrete. For this purpose, concrete mixtures are produced by substituting cement with metakaolin 0, 5, 10 and 20% by weight. The amount of binder for the concrete mixtures are 300 and $400kg/m^3$ with a constant water to cement ratio of 0.6. Compressive and bending strengths, freeze-thaw and high-temperature resistances, capillary coefficients and rapid chloride permeability properties were determined and compared each other. Because of all the experiments conducted, it has been found that the use of metakaolin as a pozzolanic additive in concrete have positive effects especially on compressive and bending strengths, capillary, rapid chloride permeability, freeze-thaw resistance, and high temperatures, up to $800^{\circ}C$. The results indicated that the performance of concrete can be enhanced by metakaolin. Particularly, compressive strength and durability properties have found to be improved with increasing metakaolin content which is attributed to pozzolanic activity and filler effect. Furthermore, metakaolin has relatively positive impacts under elevated temperatures and freeze-thaw effects. However, almost all the strengths of entire concrete specimens are lost at $800^{\circ}C$. Consequently, the optimum metakaolin substitution ratio can be suggested to be 20% as per this study.

AN EXPERIMENTAL STUDY ON THE PROPERTIES & APPLICATION FOR FLY ASH OF CONBINED HEAT POWER PLANT - FOCUSSED HIGH STRENGTH CONCRETE - (열병합발전소 플라이애쉬의 특성 및 활용방안에 관한 실험적 연구 -고강도 콘크리트를 중심으로-)

  • 권영호;백명종;이보근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.211-216
    • /
    • 1994
  • This study dealt with the properties for fly ash of conbined heat power plant and application for concrete industry. For this purpose, fly ash sampled Ulsan conbined heat power plant and analyzed for physical and chemical properties. As analyzed results of fly ash, contents of $SiO_ and Al_O_ $in the fly ash of Ulsan were less than those of Thermo-electric power plant(Boryuing), but contents of CaO were tem times as much as those of Boryung, because of these differences, it is expected that pozzolanic activity of concrete using fly ash of Ulsan will be different from another fly ash. Concrete specimens were tested to evaluate concrete preformance when 10 to 50 percent of the portland cement by weight in the concrete mix was replaced with fly ash of conbined heat power plant. As test results, workability and consideration in the fresh concrete were increased and concrete strength was showed more than 400kg/$\textrm{cm}^2$ for the required age. This study would be provided valuable data for the practical utilization of fly ash(conbined heat power plant). In the future, properties of fly ash concrete including long term strength, elapsed time, pozzolanic activity, modulus of elasticity, sulfate resistance, shrinkage, freeze-thaw durability and so on will be studied.

  • PDF

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.431-441
    • /
    • 2023
  • The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

Influence of palm oil fuel ash on behaviour of green high-performance fine-grained cement mortar

  • Sagr, Salem Giuma Ibrahim;Johari, M.A. Megat;Mijarsh, M.J.A.
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.121-146
    • /
    • 2022
  • In the recent years, the use of agricultural waste in green cement mortar and concrete production has attracted considerable attention because of potential saving in the large areas of landfills and potential enhancement on the performance of mortar. In this research, microparticles of palm oil fuel ash (POFA) obtained from a multistage thermal and mechanical treatment processes of raw POFA originating from palm oil mill was utilized as a pozzolanic material to produce high-performance cement mortar (HPCM). POFA was used as a partial replacement material to ordinary Portland cement (OPC) at replacement levels of 0, 5, 10, 15, 20, 25, 30, 35, 40% by volume. Sand with particle size smaller than 300 ㎛ was used to enhance the performance of the HPCM. The HPCM mixes were tested for workability, compressive strength, ultrasonic pulse velocity (UPV), porosity and absorption. The results portray that the incorporation of micro POFA in HPCMs led to a slight reduction in the compressive strength. At 40% replacement level, the compressive strength was 87.4 MPa at 28 days which is suitable for many high strength applications. Although adding POFA to the cement mixtures harmed the absorption and porosity, those properties were very low at 3.4% and 11.5% respectively at a 40% POFA replacement ratio and after 28 days of curing. The HPCM mixtures containing POFA exhibited greater increase in strength and UPV as well as greater reduction in absorption and porosity than the control OPC mortar from 7 to 28 days of curing age, as a result of the pozzolanic reaction of POFA. Micro POFA with finely graded sand resulted in a dense and high strength cement mortar due to the pozzolanic reaction and increased packing effect. Therefore, it is demonstrated that the POFA could be used with high replacement ratios as a pozzolanic material to produce HPCM.