• 제목/요약/키워드: pozzolanic properties

검색결과 129건 처리시간 0.026초

포졸란재 혼입율에 따른 3성분계 콘크리트의 물리적 특성에 관한 실험적 연구 (An Experimental Study on the Physical Properties of Ternary Concrete according to Replacement Ratio of Pozzolanic Admixtures)

  • 권해원;이진우;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.773-776
    • /
    • 2006
  • This experimental study is the fundamental report to use the ternary concrete. This study performed to know physical properties of ternary concrete according to replacement ratio of pozzolanic admixtures and curing temperature conjugation. To investigate Strength development properties of according to replacement ratio of pozzolanic admixtures, both fly ash replaced on portland cement in 5, 10 and 15% weight ratios and blast furnace slag replaced on the portland cement in 5, 15, 20, 30 and 40% weigt ratios was used. Also this is studied fresh and hardened concrete properties in condition of curing temperature $10^{\circ}C\;and\;20^{\circ}C$. The followings are the summary of which concluded in this study. Considering the concrete cured over 28 days compressive strength, most replacement ratios of pozzolanic admixtures were higher than plain concrete that. Compressive strength development properties of ternary concrete according to curing temperature conjugation were similar except for early age.

  • PDF

Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials

  • So, Hyoung-Seok;Janchivdorj, Khulgadai;Yi, Je-Bang;Jang, Hong-Seok;So, Seung-Young
    • 한국건축시공학회지
    • /
    • 제13권1호
    • /
    • pp.48-57
    • /
    • 2013
  • To consider the practicality and economic feasibility of developing reactive powder concrete (RPC), the strength and microstructure properties of RPC using ternary pozzolanic materials (silica fume, blast furnace slag, fly ash) were investigated in this study. Through the investigation, it was found that the compressive strength of RPC using ternary pozzolanic materials was increased significantly compared to that of the original RPC containing silica fume only. A considerable improvement in the flexural strength of RPC using ternary pozzolanic materials was found, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser using the ternary pozzolanic materials than the original RPC.

Optimal Use of MSWI Bottom Ash in Concrete

  • Zhang, Tao;Zhao, Zengzeng
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.173-182
    • /
    • 2014
  • An experimental investigation was carried out to evaluate the mechanical properties of concrete mixtures in which coarse aggregate was partially (30, 50 or 70 %) replaced with pre-washed municipal solid waste incineration (MSWI) bottom ash. Results indicated that bottom ash reduced the compressive strength, elastic modulus, and levels of heavy metals in leachate when used as a replacement for gravel, and that the maximum amount of MSWI bottom ash in concrete should not exceed 50 %. To analyze the effect mechanism of bottom ash in concrete, the degree of hydration and the following pozzolanic reaction characterized by the pozzolanic activity index, and the porosity distribution in cement mortar. The study indicates that improved properties of concrete are not solely later strength gain and reduced levels of heavy metals in leachate but also the progression of pozzolanic reactions, where a dense structure contains a higher proportion of fine pores that are related to durability.

Meta Kaolin 및 Silica Fume을 이용한 고성능 고강도 시멘트 모르타르 특성에 관한 연구 (Studies on the Properties of High Performance and High Strength Cement Mortar Using Meta Kaolin and Silica Fume)

  • 정민철
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.519-523
    • /
    • 1996
  • 시멘트 수화시 생성되는 수산화칼슘은 시멘트 모르타르의 강도 및 내구성을 감소시킨다. 이에 포졸란물질인 meta kaolin 및 silica fume을 이용하여 이러한 결점을 해결하고자 하였다. Meta kailin 및 silica fume의 함량변화에 대한 수산화칼슘의 감소는 Fourier의 시차열분석에 의해 규명되었고, mela kaolin 및 silica fume을 무첨가(0%)에 비하여 10% 이상 첨가시 수산화칼슘양이 큰 폭으로 감소함을 나타내었다. 이는 meta kaolin 및 silica fume의 SiO2 성분과 시멘트의 CaO와의 포졸란반응에 의한 것으로 나타났다.

  • PDF

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

분급 플라이애쉬의 포졸란반응 특성 (Pozzolanic reaction of classified fly ash)

  • 이승헌;황해정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.753-756
    • /
    • 2006
  • This paper discussed pozzolanic reaction properties of classified fly ashes by using of electrostatic precipitator. Blaine values of fly ashes at hoppers are respectively about 3000(ordinary), 5000(fine) and 8000cm2/g(super-fine). The pozzolanic reactivity of fly ash at early stage and at later stage are respectively related to the related to the fineness and the glass content of fly ash. But the early hydration of cement was retarded by addition of super fine fly ashes. the adiabatic temperature rise of mortar containing fly ash is increased with the fineness of fly ashes.

  • PDF

초고성능 콘크리트의 수화모델에 대한 연구 (Analysis of hydration of ultra high performance concrete)

  • 왕하이롱;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

콘크리트 혼화재료로서의 메타카올린의 기초적인 특성 연구 (A Fundamental Study of Metakaolin as a Pozzolanic Material)

  • 김용태;안태호;강범구;이정율;김병기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.281-286
    • /
    • 2001
  • The utilization of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This paper estimates the fundamental properties of metakaolin as a pozzolanic material in view of fluidity and compressive strength of cement paste and mortar in comparison of silica fume, fly ash and slag. The results show that in order to obtain the same initial fluidity, metakaolin needs higher dosage of PNS superplasticizer than fly ash and slag, however, less dosage than silica fume. In view of compressive strength of mortar, metakaolin exhibits much higher compressive strength than fly ash and slag, and similar compressive strength with silica-fume when 10 % of cement is replaced with a pozzolanic material.

  • PDF

소성볏짚의 포졸란 반응성에 관한 연구 (The Study on the Pozzolanic Reactivity of Rice Straw Ash)

  • 김성훈;정의창;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.36-37
    • /
    • 2015
  • The purpose of this study is to investigate pozzolanic reactivity of the rice straw ash. This study focused on rice straw ash properties at various burning temperature and duration as a mineral admixture for mortar and concrete, and provide the crystalline state and molecular structure of rice straw ash. X.R.D and N.M.R were performed on rice straw ashes to identify pozzolanic reactivity.

  • PDF

소성 해양 준설토의 포졸란 반응성 시험 (Preliminary Experiments on Pozzonalic Activity of Dredged Sea Soil)

  • 김지현;문훈;이재용;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.49-50
    • /
    • 2014
  • Dredged sea soil contains various contaminants. First priority to recycle dredged sea soil is to pretreat it to remove various contaminants because recycling dredge sea soil without any pre-treatment may cause a secondary contamination due to the leaching of hazardous chemicals. In this study, pretreated dredged sea soil was used to investigate pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined to evaluate pozzolanic activity. According to the results, pretreated dredged sea soil has some possibility to work as a pozzolanic material. When dredged sea soil was heat treated for 90min at 550℃, compressive strength was shown to be comparable to that of plain cement mortar.

  • PDF