• Title/Summary/Keyword: power sensor-less

Search Result 199, Processing Time 0.025 seconds

Sensor-less Approaches for Maximum Photovoltaic Power Tracking Control

  • Matsui Mikihiko;Kitano Tatsuya
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.626-630
    • /
    • 2001
  • MPPT (maximum power point tracking) control is very important for the practical PV (photovoltaic) systems to maintain efficient power generating conditions irrespective of the deviation in the PV array insolation or/and temperature conditions. Although a plenty of researches have been done so far, most of them are too costly because of being too dependant on expensive sensors for measuring photovoltaic power and micro-processors for achieving elaborate and complicated control strategies. From this point of view, authors have been researching on sensor-less approaches for MPPT control, and have proposed two types of new control schemes 'Power Equilibrium Scheme' and 'Limit Cycle Scheme'. This paper summarises these two schemes with focussing on their :- operating principles and some results of simulation and experiments.

  • PDF

Efficient Aggregation and Routing Algorithm using Local ID in Multi-hop Cluster Sensor Network (다중 홉 클러스터 센서 네트워크에서 속성 기반 ID를 이용한 효율적인 융합과 라우팅 알고리즘)

  • 이보형;이태진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.135-139
    • /
    • 2003
  • Sensor networks consist of sensor nodes with small-size, low-cost, low-power, and multi-functions to sense, to process and to communicate. Minimizing power consumption of sensors is an important issue in sensor networks due to limited power in sensor networks. Clustering is an efficient way to reduce data flow in sensor networks and to maintain less routing information. In this paper, we propose a multi-hop clustering mechanism using global and local ID to reduce transmission power consumption and an efficient routing method for improved data fusion and transmission.

  • PDF

Recent Sensor-less Vector Control of Induction Motor Applied for Electric Railway Vehicles in Japan

  • Miyashita, Ichiro;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.998-1001
    • /
    • 2003
  • Recent trend of sensor-less control of induction motor applied for commuter trains in Japan is introduced. Although many inverter-fed induction motor driven trains have been produced so far, most of them were slip frequency based conventional V/f control system using shaft encoder. There arises a new trend to apply speed sensor-less vector control., for this inverter-fed induction motor drive system. The purpose of sensor-less control is to save, cost and improve system reliability. Several sensor-less systems now under testing on the actual railway company. This paper describes the survey of the fundamental structure and feature of representative sensor-less systems mentioned above.

  • PDF

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

Instruction-Level Power Estimator for Sensor Networks

  • Joe, Hyun-Woo;Park, Jae-Bok;Lim, Chae-Deok;Woo, Duk-Kyun;Kim, Hyung-Shin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.47-58
    • /
    • 2008
  • In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction-level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction-level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz-compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction-level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine-grained optimization of their software.

  • PDF

A Study of Thermal Performances for Micro Gas Sensor (마이크로 가스센서의 열적 성능에 관한 연구)

  • Joo Young-Cheol;Kim Chang-Kyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.531-537
    • /
    • 2006
  • A lever type $NO_2$ micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro heater was built on the gas sensor. The sensing material laid on the heater and electrodes and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor to a target temperature was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power of micro heater to heat up the sensing material to the target temperature showed a good agreement with the measured data. The design of micro gas sensor could be modified to show more uniform temperature distribution and to consume less electric power by optimizing the layout of micro heater and electrodes.

Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete

  • Kim, Ji-Min;Han, Minseok;Lim, Hyung Jin;Yang, Suyoung;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.631-646
    • /
    • 2016
  • Although the deployment of wireless sensors for structural sensing and monitoring is becoming popular, supplying power to these sensors remains as a daunting task. To address this issue, there have been large volume of ongoing energy harvesting studies that aimed to find a way to scavenge energy from surrounding ambient energy sources such as vibration, light and heat. In this study, a magnetic resonance based wireless power transfer (MR-WPT) system is proposed so that sensors inside a concrete structure can be wirelessly powered by an external power source. MR-WPT system offers need-based active power transfer using an external power source, and allows wireless power transfer through 300-mm thick reinforced concrete with 21.34% and 17.29% transfer efficiency at distances of 450 mm and 500 mm, respectively. Because enough power to operate a typical wireless sensor can be instantaneously transferred using the proposed MR-WPT system, no additional energy storage devices such as rechargeable batteries or supercapacitors are required inside the wireless sensor, extending the expected life-span of the sensor.

A Low Power Dual CDS for a Column-Parallel CMOS Image Sensor

  • Cho, Kyuik;Kim, Daeyun;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.388-396
    • /
    • 2012
  • In this paper, a $320{\times}240$ pixel, 80 frame/s CMOS image sensor with a low power dual correlated double sampling (CDS) scheme is presented. A novel 8-bit hold-and-go counter in each column is proposed to obtain 10-bit resolution. Furthermore, dual CDS and a configurable counter scheme are also discussed to realize efficient power reduction. With these techniques, the digital counter consumes at least 43% and at most 61% less power compared with the column-counters type, and the frame rate is approximately 40% faster than the double memory type due to a partial pipeline structure without additional memories. The prototype sensor was fabricated in a Samsung $0.13{\mu}m$ 1P4M CMOS process and used a 4T APS with a pixel pitch of $2.25{\mu}m$. The measured column fixed pattern noise (FPN) is 0.10 LSB.

Implementation of Film Type Sensor for Synthetic Lube Oil and High Pressure Hydraulic Fluid Leak Detection (합성 윤활유 및 고압 작동유 누출감지 필름형 센서의 구현)

  • Park, No-Jin;Yu, Dong-Kuen;Yu, Hong-Kuen
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • Chemical sensors are used in various industrial facilities such high-risk and prevent the leakage of substances, important in life and environmental protection and the safe use of industry, used for management. In particular, high-temperature environments such as power generation equipment of the rotating part due to leakage generated by the various oil, power plants Shut Down, fire, work environment (exposure to various chemical solution and gas leak) and various water, air and soil pollution causes. Thus, over the long term through various channels such as crops and groundwater contamination caused by the slow, serious adverse effect on the ecosystem. In this paper, synthetic lube oil and high pressure hydraulic fluid leakage and immediately detect a new Printed Electronic implementation of technology-based film-type sensors, and its performance test. Thus, industrial accidents and environmental pollution and for early detection of problems, large accidents can be prevented. Experimental results of the synthetic lube oil and high pressure hydraulic fluid solution after the contact time depending on the experiment and the oil solution of the sensor material of the conductive porous PE resistance value by a chemical reaction could be confirmed that rapid increase. Also implemented in the film-type oil sensor electrical resistance change over time of the reaction rate and the synthetic lube oil is about 2 minutes or less, the high pressure hydraulic fluid is less than about 1 minute was. Therefore, more high-pressure hydraulic fluid such as a low volatility synthetic lube oils are the resistance change and the reaction rate was confirmed to be the slowest.