• Title/Summary/Keyword: power recovery unit

Search Result 64, Processing Time 0.027 seconds

Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect (탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가)

  • Lee, Chan;Kim, Yong Chul;Lee, Jin Wook;Kim, Hyung Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

Some theoretical and experimental aspects of a new electrodynamic separator

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.979-983
    • /
    • 1993
  • A power operated (0.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour it no various fractions based on the size of the particles of the product. The separator is made of mild steel and consists of a hopper, power driven agitating mechanism, feed control , cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat (variety : Subjata) flour separation into four fraction, viz : semolina ; Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 w and at load conditio s, it varied between 36.3-6.4kj per kg of feed separation. The machine could be used by small flour millers, small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use fo the consumers.

  • PDF

Study on the Performance of Total Heat Exchanger with Rotating Porous Plates (다공형 전열판의 회전에 의한 열교환시스템의 성능에 관한 연구(Ⅰ) - 환기측과 외기측의 풍량 변화에 대하여 -)

  • Cho, D.H.;Lim, T.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-17
    • /
    • 2005
  • This paper reports an experimental study on the performance evaluation of air-to-air heat exchanger with rotary type newly developed in this study. Air flow rate is varied from 10 to 120 m3/h. The range of RPM of the porous rotating discs mounted inside the heat exchanger unit is 0 to 50. The temperature of the return air side is set by adjusting heat supply at heater. The material of the porous rotating discs is cooper and its thickness is 1.0 mm. The heat transfer rate increased with the increase in air flow rate. It was found that the heat transfer rate, as the temperature of the return air side was increased, was improved due to higher temperature difference. The heat exchange performance increased with the increase in the temperature of the return air side at the conditions of the same RPM. The sensible heat exchange efficiency was maximum 68 to 76 percent, and enthalpy exchange efficiency 64 to 74 percent.

  • PDF

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

DEVELOPMENT AND TESTING OF MEDIUM CAPACITY GRAIN FLOUR SEPARATOR

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.966-978
    • /
    • 1993
  • A power operated 90.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour into various fractions based on the size of the particles of the product. The separator agitating mechanism, feed control, cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat ( variety ; Sujata) flour separation into four fractions, viz ; semolina, Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The pearled wheat grains were then milled for semolina by a burre mill. The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 W and at load c nditions, it varied between 36.3-6.4 KJ per kg of fead seperation. The macine could be used by small flour millers small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use of the consumers.

  • PDF

Performance and Energy Consumption Analysis of 802.11 with FEC Codes over Wireless Sensor Networks

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2007
  • This paper expands an analytical performance model of 802.11 to accurately estimate throughput and energy demand of 802.11-based wireless sensor network (WSN) when sensor nodes employ Reed-Solomon (RS) codes, one of block forward error correction (FEC) techniques. This model evaluates these two metrics as a function of the channel bit error rate (BER) and the RS symbol size. Since the basic recovery unit of RS codes is a symbol not a bit, the symbol size affects the WSN performance even if each packet carries the same amount of FEC check bits. The larger size is more effective to recover long-lasting error bursts although it increases the computational complexity of encoding and decoding RS codes. For applying the extended model to WSNs, this paper collects traffic traces from a WSN consisting of two TIP50CM sensor nodes and measures its energy consumption for processing RS codes. Based on traces, it approximates WSN channels with Gilbert models. The computational analyses confirm that the adoption of RS codes in 802.11 significantly improves its throughput and energy efficiency of WSNs with a high BER. They also predict that the choice of an appropriate RS symbol size causes a lot of difference in throughput and power waste over short-term durations while the symbol size rarely affects the long-term average of these metrics.

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF